NDSL 46 Link page¿¡¼­ [¿ø¹®º¸±â] ¹öÆ°À» Ŭ¸¯Çϼ¼¿ä.

[±¹³»³í¹®]

¡®Keunnunjami¡¯, a new blackish purple pigmented rice cultivar with giant embryo, is a mid-maturing ecotype developed by rice breeding team at Korea National Open University. This variety was derived from a three-way cross between ¡®Heugjinjubyeo¡¯ / ¡®Suweon 425¡¯ // ¡®EM76¡¯ in 2002 and selected by pedigree breeding method until F7 generation. Heading date of this variety is August 13 and 17 days later than that of ¡®Heugjinjubyeo¡¯ in middle plain areas. ¡®Keunnunjami¡¯ has 87.1 cm of culm height and 114 spikelets per panicle. Grain weight of 1,000-brown rice of this variety is lighter than of ¡®Heugjinjubyeo¡¯.However embryo weight is 2.82 times heavier than that of ¡®Heugjinjubyeo¡¯ on the single grain basis. C3G (Cyanidin 3-glucoside)content of ¡®Keunnunjami¡¯ is 2 times higher than that of ¡®Heugjinjubyeo¡¯. The brown rice yield of ¡®Keunnunjami¡¯ was about 4.10MT/ha at ordinary fertilizer level.

[±¹³»³í¹®]

¹ß¾Æ¿¡ ÀÇÇÑ °Å´ë¹è¾Æ¹ÌÀÇ »ý¸®È°¼º º¯È­¸¦ 70% ¿¡Åº¿Ã ÃßÃâ¹°À» ÀÌ¿ëÇÏ¿© °ËÅäÇÏ¿´´Ù. »ý¸®È°¼ºÀÇ º¯È­´Â ½Ã·áÀÇ È¯¿ø·Â°ú Æä³î È­ÇÕ¹°ÀÇ ÇÔ·®, Ç׺¯ÀÌ¿ø¼³, ±×¸®°í Á¤»ó¼¼Æ÷¿¡ ´ëÇÑ ¼¼Æ÷µ¶¼ºÀ» ÃøÁ¤ÇÔÀ¸·Î½á Æò°¡ÇÏ¿´´Ù. ¿¬±¸ °á°ú, ¹«¹ß¾Æ Á¶°Ç¿¡¼­ ȯ¿ø·ÂÀº ³²Ç³°Å´ë¹è¾Æ¹Ì >ÀÏ¹Ý¹Ì >ȭû°Å´ë¹è¾Æ¹ÌÀÇ ¼ø¼­¿´À¸³ª, ¹ß¾Æó¸®Çϸé ȭû°Å´ë¹è¾Æ¹Ì >³²Ç³°Å´ë¹è¾Æ¹Ì >ÀϹݹÌÀÇ ¼ø¼­·Î È°¼ºÀÌ º¯È­ÇÏ¿´´Ù. ³²Ç³°Å´ë¹è¾Æ¹Ì¿Í ÀϹݹ̴ ¹ß¾Æ󸮷Πȯ¿ø·ÂÀÌ °¨¼ÒÇϴµ¥ ¹ÝÇÏ¿©, ȭû°Å´ë¹è¾Æ¹Ì´Â ¾à 3¹è Áõ°¡ÇÏ¿´´Ù. ¹«¹ß¾Æ Á¶°Ç¿¡¼­ 3Ç°Á¾ÀÇ ½ÒÀº °ÅÀÇ ºñ½ÁÇÑ ¼öÁØÀÇ Æä³î È­ÇÕ¹° ÇÔ·®À» º¸¿´´Ù. ¹Ý¸é, ¹ß¾Æ󸮴 ³²Ç³°Å´ë¹è¾Æ¹Ì¿Í ÀϹݹÌÀÇ Æä³î È­ÇÕ¹° ÇÔ·®¿¡ Å©°Ô ¿µÇâÀ» ÁÖÁö ¾ÊÀº ¹Ý¸é, ³²Ç³°Å´ë¹è¾Æ¹ÌÀÇ Æä³î ÇÔ·®À» 2.6¹è Áõ°¡½ÃÄ×´Ù. $GABA({\gamma}-aminobutyric acid)$ ÇÔ·®À» ÃøÁ¤ÇÑ °á°ú, ¹ß¾Æ󸮿¡ °ü°è¾øÀÌ ÇÔ·®Àº ȭû°Å´ë¹è¾Æ¹Ì >³²Ç³°Å´ë¹è¾Æ¹Ì >ÀϹݹÌÀÇ ¼ø¼­¿´°í ¹ß¾Æ󸮴 ¸ðµç Ç°Á¾¿¡¼­ 2.4¹è ÀÌ»óÀÇ ÇÔ·®Áõ°¡¸¦ ÀÏÀ¸Ä×´Ù. ÃßÃâ¹°ÀÇ Ç׺¯ÀÌ¿ø¼ºÀ» Á¶»çÇÑ °á°ú, ¹ß¾Æ󸮿¡ ÀÇÇÏ¿© ¸ðµç Ç°Á¾¿¡¼­ Ç׺¯ÀÌ¿ø¼ºÀÌ 2.7¹è ÀÌ»ó Áõ°¡ÇÏ¿´Áö¸¸, ¹ß¾Æ ȭû°Å´ë¹è¾Æ¹ÌÀÇ Ç׺¯ÀÌ¿ø¼ºÀÌ °¡Àå ³ô°Ô ³ªÅ¸³µ´Ù.

[±¹³»³í¹®]

°Å´ë¹è¾Æ¹Ì ¿¡Åº¿Ã ÃßÃâ¹°ÀÇ Ç×»êÈ­È°¼ºÀ» ÁöÁú°ú»êÈ­ ¾ïÁ¦È°¼º ¹× È°¼º»ê¼ÒÁ¾ÀÇ ¼Ò°ÅÈ°¼ºÀ» Áß½ÉÀ¸·Î ÀÏ¹Ý¹Ì¿Í ´ëÁ¶ÇÏ¿© °ËÅäÇÏ¿´´Ù. ¿¬±¸ °á°ú, ¹ß¾Æ󸮴 Àü¹ÝÀûÀ¸·Î ȯ¿ø·Â ¹× ÁöÁú°ú»êÈ­ ¾ïÁ¦È°¼º, superoxide radical ¹× hydroxyl radical ¼Ò°ÅÈ°¼ºÀ» »ó½Â½ÃÄ×À¸¸ç, ¹ß¾Æ󸮿¡ ÀÇÇÑ Ç×»êÈ­ È°¼ºÀÇ Áõ°¡Çö»óÀÌ È­Ã»°Å´ë¹è¾Æ¹Ì¿¡¼­ °¡Àå ¶Ñ·ÇÇÏ¿´´Ù. Superoxide radical ¼Ò°ÅÀÛ¿ë¿¡ À־´Â ³²Ç³°Å´ë¹è¾Æ¹Ì°¡ ÀüüÀûÀÎ ¼Ò°ÅÈ°¼ºÀº ³ô¾ÒÀ¸³ª, ¹ß¾Æ󸮿¡ ÀÇÇÑ È°¼ºÀÇ »ó½Â·üÀº ¿ª½Ã ȭû°Å´ë¹è¾Æ¹Ì°¡ °¡Àå ³ô¾Ò°í, ±× ÀÛ¿ë±âÀÛÀº ½Ã·á¿¡ ÀÇÇÑ Á÷Á¢ÀûÀÎ radical ¼Ò°Å¿¡ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. »ýü µ¶¼ºÀÌ °¡Àå Å« hydroxyl radical ¼Ò°ÅÈ°¼ºÀ» Á¶»çÇÑ °á°ú, ȭû°Å´ë¹è¾Æ¹Ì°¡ ÀüüÀûÀÎ ¼Ò°ÅÈ°¼º »Ó ¾Æ´Ï¶ó, ¹ß¾Æ󸮿¡ ÀÇÇÑ ¼Ò°ÅÈ°¼ºÀÇ Áõ°¡À²µµ °¡Àå ³ô¾ÒÀ¸¸ç, ±× ÀÛ¿ë±âÀÛµµ $Fe^{2+}$ÀÇ Æ÷Á·ÀÌ ¾Æ´Ñ Á÷Á¢ÀûÀÎ ¶óµðÄ® ¼Ò°ÅÀÓÀÌ ¹àÇôÁ³´Ù. ÀÌ¿Í °°Àº in vitro¿¡¼­ °üÂûµÈ ½Ã·áÀÇ ROS ¼Ò°ÅÈ°¼ºÀº TPAÇÏ¿© À¯µµµÈ HL-60 ¼¼Æ÷ÀÇ ROS »ý»êÀ» ¾ïÁ¦Çϴµ¥ À¯È¿ÇÏ°Ô ÀÛ¿ëÇÏ¿´´Ù.

[±¹³»³í¹®]

¿µ¾ç°¡°¡ ³ôÀº ½ÒÀ» »ý»ê º¸±ÞÇÏ¿© ±¹¹Î°Ç°­ÁõÁøÀ» µµ¸ðÄÚÀú ±¹³»¿¡¼­ Àç¹èµÇ°í ÀÖ´Â º­ 19°³ Ç°Á¾À» ´ë»óÀ¸·Î ÀϹݵµÁ¤¹ýÀ¸·Î 10ºÐµµ·Î µµÁ¤ÇÑ ÈÄ ¹è¾Æº¸Á¸À²ÀÌ ³ôÀº ¿ÀºÀº­¸¦ ¼±ÅÃÇÏ¿© ¿ÜÇü, ¿µ¾ç°¡ ¹× µ¿¹° »çÀ°È¿°ú¸¦ Á¶»ç ºñ±³ÇÏ¿´´ø ¹Ù ¿ÀºÀº­ÀÇ ¹è¾Æº¸Á¸À²Àº 96.7%¿´À¸¸ç, ¿ÜÇüÀº ÀüÇüÀûÀÎ ÀϺ»Çü¿¡ ¼ÓÇÏ¿´´Ù. Á¶»ç µÈ ¸ðµç ¿µ¾ç¼ººÐÀº ³«µ¿º­ º¸´Ù ¿ÀºÀº­°¡ ³ô¾ÒÀ¸¸ç, ƯÈ÷ ºñŸ¹Î B$_1$°ú NiacinÀº ³«µ¿º­°¡ °¢°¢ 0.14 ¹× 1.9mg%Àε¥ ºñÇÏ¿© ¿ÀºÀº­°¡ 0.31 ¹× 3.0mg%·Î 1.5¹èÁ¤µµ ³ô¾Ò´Ù. ±×¸®°í Áã »çÀ°È¿°úµµ ÁõüÀ²°ú »ç·áÈ¿°ú¿¡¼­ ³«µ¿º­´Â °¢°¢ 101 ¹× l25%À̸ç. ¿ÀºÀº­´Â °¢°¢ 107 ¹× 172% ·Î ¿ÀºÀº­°¡ ³«µ¿º­ º¸´Ù ³ô¾Ò´Ù. ¶ÇÇÑ ½Ä¹Ìµµ »öÀ» Á¦¿ÜÇÏ°í ¸À, ³¿»õ ¹× ²ö±â´Â ¿ÀºÀº­°¡ ³«µ¿º­ º¸´Ù ³ô¾Ò´Ù.

[±¹³»³í¹®]

½Å¼±Âû°Å´ë¹è¾Æ¹Ì, ȭû°Å´ë¹è¾Æ¹Ì ¹× ³²Ç³°Å´ë¹è¾Æ¹Ì µî °Å´ë¹è µ¹¿¬º¯ÀÌ °èÅë ½Ò 3Á¾·ù ¹× ÀϹݹÌÀÇ 70% ¿¡Åº¿Ã ÃßÃâ¹°À» Á¦Á¶ÇÏ¿©, À̵éÀÇ Ç×»êÈ­ È°¼º ¹× Ç׺¯ÀÌ¿ø¼ºÀ» ºñ±³ °ËÁ¤ÇÏ¿´´Ù. °Å´ë¹è¾Æ¹Ì ÃßÃâ¹°ÀÇ Ç×»êÈ­ È°¼ºÀº DPPH radical ¹× Fenton ¹ÝÀÀ¿¡ ÀÇÇؼ­ À¯µµµÇ´Â hydroxy radicalÀÇ ¼Ò°ÅÈ°¼º, hypoxanthine/xanthine oxidase system¿¡¼­ »ý¼ºµÇ´Â È°¼º»ê¼ÒÁ¾ÀÎ superoxide radicalÀÇ ¼Ò°ÅÈ°¼º, linoleic acidÀÚµ¿»êÈ­¿¡ ´ëÇÑ ÁöÁú °ú»êÈ­ ¾ïÁ¦È°¼º ¹× Åä³¢ ÀûÇ÷±¸ ¸·ÁöÁúÀÇ °ú»êÈ­ ¾ïÁ¦È°¼º µÕÀ¸·Î½á °ËÁ¤ÇÏ¿´À¸¸ç, Ç׺¯ÀÌ¿ø¼ºÀº E. coli PQ 37 ±ÕÁÖ¸¦ »ç¿ëÇÏ¿© È­ÇÐÀû º¯ÀÌ¿ø mitomycin C¿¡ ´ëÇÑ º¯ÀÌ¿ø¼º ¾ïÁ¦È¿°ú¸¦ SOS chromotest¿¡ ÀÇÇؼ­ °ËÁ¤ÇÏ¿´´Ù. ÀÏ¹Ý¹Ì Ç°Á¾¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì Ç°Á¾ÀÇ Ç×»êÈ­ È°¼º ¹× Ç׺¯ÀÌ¿ø¼ºÀÌ ¸ðµÎ ³ô¾ÒÀ¸¸ç, °Å´ë¹è¾Æ¹Ì Ç°Á¾ Áß¿¡¼­´Â ³²Ç³°Å´ë¹è¾Æ¹Ì°¡ °¡Àå È¿°úÀûÀÎ °æÇâÀÌ ÀÖ¾ú´Ù. ³²Ç³°Å´ë¹è¾Æ¹ÌÀÇ DPPH radical, superoxide radical°ú hydroxyl radical ¼Ò°ÅÈ°¼º, ±×¸®°í ÁöÁú°ú»êÈ­ ¾ïÁ¦È°¼ºÀº ÀϹݹ̺¸´Ù °¢°¢ 2.3¹è, 3.3¹è, 1.7¹è ¹× 2.5¹è Á¤µµ±îÁö ´õ ³ô¾Ò´Ù.

[±¹³» ÇÐÀ§³í¹®]

1. The Physiochemical Characteristics of giant embryonic rice According to the results of analyzing the physiochemical characters of eight species starches, the cross-sections of grains and the sizes of the starch grains are mostly similar between ordinary kinds and giant embryo kinds. Only there are differences in the sizes of starch grains among the species. The degree of bluing in the starch-I_(2) reaction is somewhat lower in the giant embryo species. The results of comparing the distribution of glucose chain length using HPLC suggest that Hwachnongchalbyeo and Shinsunchal giant embryonic rice contain a large quantity of short chain length while Nampungbyeo contains long chain length. Hwachnong giant embryonic rice shows the highest gelatinization enthalpy. Among the normal species, giant embryos species show low hydrolysis rate. 2. Antioxidant and Antimutagenic activity of Ethanol extracts from Giant Embroyonic Rice 70% ethanolic extracts were prepared form the three mutant rice cultivars with giant embryonic termed Shinsunchal giant embryonic rice, Hwachnong giant embryonic rice and Nampung giant embryonic rice and its Antioxidative and antimutagenic properties were evaluated and compared. For analysing antioxidativity, various Antioxidative indices, such as electron donating ability to DPPH radical, scavenging capacity to hydroxyl radicals generated Fenton reaction, scavenging capacity to superoxide radicals generated by HPX/XOD system, inhibitory effects on autoxidation of linoleic acid and inhibitory effects on membrane lipid peroxidation derived from rabbit erythrocyte ghost, were deterred. For analyse mutagenicity suppressive effects on mutagenesis induced by the chemical mutagen, mytomycin C, were measured using E. coli PQ 37 as a indicator cell. the results showed that for both antioxidativity and antimutagenicity the giant embryonic rices were more effectives compared to the general cooking rice. Among the giant embryonic rice cultivars, Nampung giant embryonic rice tended to be the most effective showing its scavenging activity to DPPH radical, superoxide radical and hydroxyl radical, and inhibitory activity to lipid peroxidation was 2.3-,3.3-, 1.7- and 2.5-fold greater than those of normal rice, respectively. 3. Amylolytic activity and Properties of Starch Granules from the Giant Embryonic Rices Rice seeds of 4 cultivars including Hwachnong giant embryonic rice, and Nampung giant embryonic rice, as a group of the non-waxy rice cultivars and Shinsunchal giant embryonic rice and Hwachenongchal giant embryonic rice, as that of the waxy rice cultivars, were germinated at 27¡É for 3days to compare the changes in some physicochemical properties of the starch granules and the starch hydrolysing enzyme activities during germination, respectively. ¥á-amylase activity of rices germinated for 3 days found to be higher than that of malt. especially, Hwachenong giant embryonic rice and Shinsunchal giant embryonic rice were greater in activity than other rice cultivars and possessed the activities double that of malt. In contrast, ¥â-amylase of germinated rice found to be considerably less active than malt, although the giant embryonic rice group showed prevalent activity as compared to the normal rice group. With the starch granules, the amount of long glucose chains from amylose molecules were reduced in the non-waxy type giant embryonic rices, while the chain length increase was found in the waxy type giant embryonic rices. For the distribution profile of the glucose chain length from amylopectin molecules, we could observed that the chain length with DP(degree of polymerization) ranged 33 to 66 and 14 to 32 increased with the decreasing rate of that above 67 and below 13 regardless of starch waxiness. With non-waxy type of giant embryonic rices, susceptibility for glucoamylase were found to reduce along with germination, however, increase in susceptibility was observed with waxy rice types. In addition, we found the reduction in both initiation and termination temperature, and enthalpy for gelatinization. 4. Antioxidant and Antimutagenic activity of Ethanol extracts from Germination Giant Embroyonic Rices Changes in physiological functionality of giant embryonic rice by germination process were investigated using 70% ethanol extract of the rices. Physiological functionality was evaluated by determining the reducing power, phenolics compound content, GABA content, and Antimutagenicity. The results showed that the order of reducing power of the non-germinated rices was Nampung giant embryonic rice > normal rice > Hwachenong giant embryonic rice, however, the activity was changed for the order of Hwachenong giant embryonic rice > Nampung giant embryonic rice > normal rice by germination process. About 3-fold activity increase was observed for Hwachenong giant embryonic rice, contrarily, the activity of Nampung giant embryonic rice and normal rice decreased by the same treatment. For the phenolic compound content, three rice cultivars were found to have almost same levels. Germination process increased the content of phenolic compounds by 2-.6-fold, however, any considerable changes could not be observed for both Nampung giant embryonic rice and normal rice. We also measured the GABA contents, showing that the order of the contents was Hwachenong giant embryonic rice > Nampung giant embryonic rice > normal rice in either germination or non-germination condition, and that germination process increased the GABA contents by more than 2.4-fold for all rice cultivars tested. We also found about 2.7-fold increase in the antimutagenic activity by germination process for all cultivars, the activity of which was found to be the greatest for Hwachenong giant embryonic rice. 5. Effect of Germination giant embryonic rice on the Lipid metabolism in Rats Fed High-cholesterol Diet This study was undertaken to investigate the effect of germination giant embryo on the lipid metabolism in rats fed high cholesterol diet. Fifty rats of 4 experimental groups were fed with a diet containing 1% cholesterol and supplemented mixed rice powder for 5 weeks. Body weight gain, FER were not different among experimental groups, but food intake was lower in germination giant embryo group compared to the other groups. The concentration of plasma TC, TG was not different among experimental group, however HDL-cholesterol/total-cholesterol(%) was significantly higher and atherogenic index was significantly lower in the germination giant embryo and giant embryo. In comparison of fecal sterol contents germination giant embryo group and giant embryo group resulted in increase of both neutral and acidic sterol compared to the groups. Plasma and tissues TBARS concentration was decreased by germination giant embryo group and giant embryo group. This study suggested that germination giant embryo and giant embryo administeration improves lipid metabolism and the risk factor for colon cancer might be reduced, when functional rices are consumed more. Liver total cholesterol and triglyceride levels were significantly lower in germination giant embryo group than in the control. Plasma GOT and GPT activities, induces of hepatic toxicity, were significantly lower in germination giant embryo group than the other groups. The levels of hepatic TBARS were significantly decreased by germination giant embryo group and giant embryo group. In comparisons of hepatic antioxidant enzyme activities germination giant embryo group fed significantly increased the hepatic superoxide dismutase, catalase and glutathione reductase activities compared to the other groups. 6. The Effect of Germination giant embryonic rice Feeding on Glucose Metabolism, lipid metabolism and Antioxidative Defence system of liver in Streptozotocin-induced Diabetic Rats This study was performed to investigate the influence of germination giant embryo feeding on gastrointestinal functions and glucose metabolism in streptozotocin-induced diabetic rats. The experimental subjects were divided into 5 groups: normal control, giant embryo control, diabetic control, diabetic giant embryo, diabetic germination giant embryo. The animals were fed rice powder each of the experimental diets 6 weeks. The body weight gains of diabetic germination giant embryo group and diabetic giant embryo group were significantly suppressed and compared to that of the normal control groups. Food intake and blood glucose were increase in diabetic germination giant embryo group and diabetic giant embryo group compared with that of control groups. The enlargement of kidney in the diabetic animals were remarkable. Feeding of germination giant embryo and giant embryo appeared to have ameliorating effects on diabetic symptoms including features such as polyphasia, polyuria, blood glucose. Germination giant embryo and giant embryo shortened GI transit time and increased total fecal weight, total fecal dry weight, fecal water content and fecal crude fat excretion compared with diabetic control. Germination giant embryo and giant embryo showed fasting blood glucose lowering effect compared with diabetic control. The disccharidase activities in proximal part of intestine such as maltase, sucrose, and lactase in germination giant embryo and giant embryo feeding groups were lower than diabetic control. The results of this study show that germination giant embryo and giant embryo supplementation may have a beneficial effect on the glucose metabolism and symptoms in diabetic rats and may be useful in the diet therapy for diabetic. Liver triglyceride level of diabetic germination giant embryo groups increase on compared with the diabetic control group. Liver total cholesterol level of diabetic germination giant embryonic rice groups increase on compared with the diabetic control group. Activities of the serum glutamic oxaloacetate transaminase (GOT) and the glutamic pyruvate transaminase (GPT) in diabetic germination giant embryonic rice and diabetic giant embryonic rice were higher than diabetic control. The concentration of TBARS in liver was decreased diabetic germination giant embryo and diabetic giant embryo compared to diabetic control. Hepatic SOD, catalase, GSH-px activity was increased diabetic germination giant embryonic rice and diabetic giant embryonic rice compared to diabetic control. The present result indicate that function rice regarded to suppress lipid peroxidation as an free radical scavenger system by the inhibition of oxidative stress. Plasma Triglyceride and total cholesterol level of diabetic germination giant embryo, giant embryo groups decreased compared with the diabetic control group. HDL-cholesterol and atherogenic index(AI) level of diabetic germination giant embryo, giant embryo groups increased compared with that of diabetic control group. The fecal excretion of coprostanol, cholesterol, and bile acid were increased in diabetic germination giant embryonic rice, giant embryonic rice groups compared with the diabetic control group. The urinary and plasma TBARS level were higher in diabetic control groups. Concentrations of TBARS in liver, heart, and kidney tissues from diabetic animal were higher than those from the normal groups. These data suggest that function rice supplementation of might reduced the incidence of atherosclerosis through increasing the excretion of neutral steroids and peroxidative damage of tissue. 7. Cooking conditions and texture changes of cooked rice added with germination giant embryonic rice This study was investigated cooking condition of rice added 10%, 20%, 30% ratios of brown rice, giant embryonic rice, germination giant embryonic rice. In sensory evaluation, the cooked rice added 10% giant embryonic rice was showed the highest values for color and germination giant embryonic rice case the ratio was acceptable up to 30%. The textual properties for those ratios were also affected by the period of the storage. The hardness comparison shows that the cooked rice with germination giant embryonic rice is less than cooked with function rice in 2 hours. After 24 hours, the lowest hardness level was obtained in germination giant embryonic rice. The highest value for adhesiveness, springiness, gumminess, chewiness was observed in the cooked rice case with 30% germination giant embryonic rice in 2 hours. 8. Quality characteristics of brown rice flakes prepared with giant embryonic rice The Quality Characteristics for brown rice flake were examined using three kinds of rice brown cultivars such as brown rice, giant embryonic rice, germination giant embryonic rice. It is difficult to cook brown rice the qualities of grain such as the released reducing sugar, water absorption and hardness of grain are examined in different temperature and time and pressed grain brown flake are made by sedimentation the grain in 60¡É water for 5hours. The brown rice flakes made from the germination giant embryonic type rice showed higher expansion volume, lower hardness, more crispness, longer bowl life time and better taste than by that prepared from normal type rice cultivars.

[±¹³»³í¹®]

¸ÞÇ°Á¾ÀÇ °Å´ë¹è¾Æ¹ÌÀΠȭû°Å´ë¹è¾Æ¹Ì, ³²Ç³°Å´ë¹è¾Æ¹Ì, ±×¸®°í ÂûÇ°Á¾ÀΠȭûÂû°Å´ë¹è¾Æ¹Ì, ½Å¼±Âû°Å´ë¹è¾Æ¹Ì µî 4Ç°Á¾ÀÇ °Å´ë¹è¾Æ¹Ì Ç°Á¾ÀÇ º±¾¾¸¦ °¢°¢ $27^{\circ}C$¿¡¼­ 3ÀÏ°£ ¹ß¾Æ½ÃÄÑ, ¹ß¾Æ¿¡ µû¸¥ ÀüºÐ °¡¼öºÐÇØ È¿¼ÒÀÇ È°¼º ¹× ÀüºÐÀÔÀÚÀÇ ÀÌÈ­ÇÐÀû Ư¼ºÀ» °¢°¢ ºñ±³ÇÏ¿´´Ù. 3ÀÏ°£ ¹ß¾Æ½ÃŲ º­ÀÇ ${\alpha}-amylase$ÀÇ È°¼ºÀº ¸Æ¾Æ¿¡ ºñÇؼ­ È°¼ºÀÌ ³ô°Ô ³ªÅ¸³µÀ¸¸ç, ƯÈ÷ ȭû°Å´ë¹è¾Æ¹Ì ¹× ½Å¼±Âû°Å´ë¹è¾Æ¹Ì´Â ¸Æ¾Æº¸´Ù ¾à 2¹è Á¤µµÀÇ È°¼ºÀ» ³ªÅ¸³»°í ÀÖ¾ú´Ù. ÀÌ¿¡ ºñÇؼ­ ${\beta}-amylase$ÀÇ °æ¿ì´Â ÀϹÝÇ°Á¾º¸´Ù´Â °Å´ë¹è¾Æ¹ÌÇ°Á¾ÀÇ È°¼ºÀÌ ³ô±â´Â ÇÏÁö¸¸ ºñ±³±ºÀÎ ¸Æ¾Æ¿¡ ºñÇؼ­ »ó´çÈ÷ ³·Àº È°¼ºÀ» ³ªÅ¸³»°í ÀÖ¾ú´Ù. ÀüºÐºÐÀÚ Áß ¾Æ¹Ð·Î¿À½º ºÐÀÚ À¯·¡ÀÇ ±ä Æ÷µµ´ç »ç½½ÀÇ ¾çÀº ¹ß¾Æ¿Í ´õºÒ¾î ¸ÞÇ°Á¾ °Å´ë¹è¾Æ¹Ì¿¡¼­´Â ÁÙ¾îµé°í ÀÖ¾úÀ¸¸ç, ÂûÇ°Á¾¿¡¼­´Â Áõ°¡ÇÏ°í ÀÖ¾ú´Ù. ¾Æ¹Ð·ÎÆåƾ ºÐÀÚ À¯·¡ÀÇ Æ÷µµ´ç »ç½½±æÀÌ ºÐÆ÷´Â Âûº­¿Í ¸Þº­ Ç°Á¾¿¡ °ü°è¾øÀÌ ¹ß¾Æ¿Í ´õºÒ¾î ÁßÇÕµµ°¡ 14ºÎÅÍ 60°¡Áö ºñÀ²Àº Áõ°¡ÇÏ°í ÀÖ¾úÀ¸¸ç, ÁßÇÕµµ 130ÀÌ»ó ¶Ç´Â 13ÀÌÇÏÀÇ ºñÀ²Àº °¨¼ÒÇÏ°í ÀÖ¾ú´Ù. Glucoamylase¿¡ ÀÇÇÑ °¡¼öºÐÇصµ´Â °Å´ë¹è¾Æ¹Ì¸ÞÇ°Á¾ÀÇ °æ¿ì¿¡´Â ¹ß¾Æ¿Í ´õºÒ¾î ÇöÀúÈ÷ ³·¾ÆÁö°í ÀÖ¾ú°í, ÂûÇ°Á¾ÀÇ °æ¿ì¿¡´Â ¿ÀÈ÷·Á Áõ°¡ÇÏ°í ÀÖ¾ú´Ù. ±×¸®°í ȣȭ°³½Ã¿Âµµ, ȣȭÁ¾·á ¹× ȣȭ¿£Å»ÇÇ´Â °¨¼ÒÇÏ°í ÀÖ¾ú´Ù.

[ÇØ¿Ü³í¹®]

¿µ¾ç°¡°¡ ³ôÀº ½ÒÀ» »ý»ê º¸±ÞÇÏ¿© ±¹¹Î°Ç°­ÁõÁøÀ» µµ¸ðÄÚÀú ±¹³»¿¡¼­ Àç¹èµÇ°í ÀÖ´Â º­ 19°³ Ç°Á¾À» ´ë»óÀ¸·Î ÀϹݵµÁ¤¹ýÀ¸·Î 10ºÐµµ·Î µµÁ¤ÇÑ ÈÄ ¹è¾Æº¸Á¸À²ÀÌ ³ôÀº ¿ÀºÀº­¸¦ ¼±ÅÃÇÏ¿© ¿ÜÇü, ¿µ¾ç°¡ ¹× µ¿¹° »çÀ°È¿°ú¸¦ Á¶»ç ºñ±³ÇÏ¿´´ø ¹Ù ¿ÀºÀº­ÀÇ ¹è¾Æº¸Á¸À²Àº 96.7%¿´À¸¸ç, ¿ÜÇüÀº ÀüÇüÀûÀÎ ÀϺ»Çü¿¡ ¼ÓÇÏ¿´´Ù. Á¶»ç µÈ ¸ðµç ¿µ¾ç¼ººÐÀº ³«µ¿º­ º¸´Ù ¿ÀºÀº­°¡ ³ô¾ÒÀ¸¸ç, ƯÈ÷ ºñŸ¹Î B$_1$°ú NiacinÀº ³«µ¿º­°¡ °¢°¢ 0.14 ¹× 1.9mg%Àε¥ ºñÇÏ¿© ¿ÀºÀº­°¡ 0.31 ¹× 3.0mg%·Î 1.5¹èÁ¤µµ ³ô¾Ò´Ù. ±×¸®°í Áã »çÀ°È¿°úµµ ÁõüÀ²°ú »ç·áÈ¿°ú¿¡¼­ ³«µ¿º­´Â °¢°¢ 101 ¹× l25%À̸ç. ¿ÀºÀº­´Â °¢°¢ 107 ¹× 172% ·Î ¿ÀºÀº­°¡ ³«µ¿º­ º¸´Ù ³ô¾Ò´Ù. ¶ÇÇÑ ½Ä¹Ìµµ »öÀ» Á¦¿ÜÇÏ°í ¸À, ³¿»õ ¹× ²ö±â´Â ¿ÀºÀº­°¡ ³«µ¿º­ º¸´Ù ³ô¾Ò´Ù.

[±¹³»³í¹®]

ÃéÀå¿¡ ${\beta}-cell$¿¡¸¸ ƯÀÌÀûÀ¸·Î ÀÛ¿ëÇÏ°í ´Ù¸¥ ±â°ü¿¡´Â ¿µÇâÀ» ÁÖÁö ¾Ê´Â °ÍÀ¸·Î º¸°íµÇ¾î ÀÖ´Â streptozotocinÀ» ÈòÁã¿¡°Ô Åõ¿©ÇÏ¿© ´ç´¢º´À» À¯¹ß½ÃŲ ´ÙÀ½ ¹é¹Ì, Çö¹Ì, °Å´ë¹è¾Æ¹Ì¸¦ 6ÁÖ°£ ±Þ¿©ÇÑ ÈÄ Ç÷´ç°­È­ È¿°ú¸¦ ¾Ë¾Æº¸¾Ò´Ù. ½ÇÇè±â°£µ¿¾È ¸ðµç ´ç´¢±ºµéÀÇ Ã¼ÁßÁõ°¡´Â Á¤»ó±º¿¡ ºñÇؼ­´Â À¯ÀÇÀûÀ¸·Î ³·¾Ò´Ù. ´ç´¢´ëÁ¶±º¿¡ ºñÇؼ­´Â °Å´ë¹è¾Æ¸¶¸¦ ±Þ¿©ÇÑ ±º¿¡¼­ üÁß°¨¼ÒÇö»óÀÌ ¾ïÁ¦µÇ¾ú´Ù. Àå±âÁß ¸ÍÀåÀÇ °æ¿ì 2¹è ÀÌ»óÀÇ ºñ´ëÇö»óÀÌ ³ªÅ¸³µ°í Á¤»óÁã¿¡ ºñÇØ ´ç´¢Áã°¡ ¼öºÐ¼·Ãë·®, ¼Òº¯¹è¼³·®, Ç÷´çÀÌ À¯ÀÇÀûÀ¸·Î ³ô°Ô ³ªÅ¸³µ´Âµ¥ ´ç´¢º´ÀÇ ÁÖ¿ä Áõ¼¼°¡ ´Ù°¥(polydipsia), ´Ù´¢(polyuria), ´Ù½Ä(polyphagia), °íÇ÷´çÀÎÁ¡¿¡¼­ ´ç´¢±º¿¡ ºñÇؼ­ °¡´ë¹è¾Æ¹Ì´Â ´ç´¢Áõ¼¼°¡ ¾î´À Á¤µµ È£ÀüÈ¿°ú°¡ ÀÖÀ½À» º¸¿©ÁÖ°í ÀÖ´Ù. ½ÄÀ̼·Ãë·®Àº Á¤»ó±º¿¡ ºñÇØ ´ç´¢½ÇÇ豺µéÀÌ ³ô°Ô ³ªÅ¸³µÀ¸¸ç ¼öºÐ¼·Ãë·®Àº Á¤»ó±º¿¡ ºñÇØ ´ç´¢´ëÁ¶±ºÀÌ ¼öºÐ ¼·Ãë·®Áõ°¡°¡ ³ªÅ¸³µ´Ù. ´ç´¢½ÇÇ豺 ³»¿¡¼­´Â ´ç´¢´ëÁ¶±º¿¡ ºñÇØ °¡´ë¹è¾Æ¹Ì±ºÀÌ ¼öºÐ¼·Ãë·®ÀÌ °¨¼ÒÇÏ¿´´Ù. ´¢ ¹è¼³·®Àº Á¤»ó±º¿¡ ºñÇØ ´ç´¢´ëÁ¶±ºÀÌ À¯ÀÇÀûÀ¸·Î ³ô°Ô ³ªÅ¸³µÀ¸¸ç ´ç´¢´ëÁ¶±º¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì±ºÀÌ °¨¼ÒÇÏ¿´´Ù. Àå ±â´É Á¶Àý·Î¼­ ÀåÅë°ú ½Ã°£°ú ºÐº¯°íÇü¹°ÀÇ ¾ç¿¡´Â ¿ªÀÇ »ó°ü°ü°è·Î ½ÄÀ̼¶À¯¼ÒÀÇ ÇÔ·®ÀÌ ³ôÀº ½Ò Ç°Á¾ÀÎ °Å´ë¹è¾Æ¹Ì´Â ÀåÅë°ú ½Ã°£ÀÌ ÂªÀ¸¸ç ºÐº¯°íÇü¹°ÀÇ ¾çÀ» À¯ÀÇÀûÀ¸·Î Áõ°¡½ÃÄ×À¸¸ç º¯ÀÇ ¼öºÐº¸À¯·®µµ Á¤»ó±º¿¡ ºñÇØ ´ç´¢½ÇÇ豺µéÁß °Å´ë¹è¾Æ¹Ì±º Àü¹ÝÀûÀ¸·Î ³ô¾Ò´Ù. À§ °á°ú¿¡¼­ °Å´ë¹è¾Æ¹Ì ±Þ¿©°¡ ´ç´¢µ¿¹°ÀÇ °øº¹½Ã Ç÷´ç ¼öÁØÀ» À¯ÀÇÀûÀ¸·Î ³·Ãߴµ¥ È¿°ú°¡ ÀÖ¾úÀ¸¸ç ÀÌ´ç·ù ºÐÇØ È¿¼Ò È°¼ºÀÇ °æ¿ì Á¤»ó±º¿¡ ºñÇؼ­ ´ç´¢±ºÀÌ lactase, maltase, sucrase È°¼ºÀÌ ÇöÀúÇÏ°Ô Áõ°¡ µÇ¾úÁö¸¸ ´ç´¢½ÇÇ豺Áß¿¡´Â °Å´ë¹è¾Æ¹Ì°¡ ¼ÒÀåÁ¡¸·ºÎºÐÀÇ lactase, maltase, sucraseÀÇ È°¼ºÀ» ÀúÇؽÃÅ´À¸·Î¼­ Ç÷´ç»ó½ÂÀ» ¾ïÁ¦½ÃÅ°´Â °ÍÀ¸·Î º¼ ¼ö ÀÖ¾ú´Ù. ÀÌ»óÀÇ °á°ú·Î ¹é¹Ì, Çö¹Ì¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì¸¦ ±Þ¿©ÇÑ ´ç´¢µ¿¹°¿¡¼­ Ç÷´çÀ» ¾ïÁ¦½ÃÅ°´Â È¿°ú¸¦ º¸¾Ò´Ù.

[±¹³» ȸÀÇÀÚ·á]

½Ò¿¡ ÇÔÀ¯µÈ Áö¹æÁúÀº °¡°ø ó¸® Áß ½±°Ô °¡¼öºÐÇسª »êÈ­¸¦ ÀÏÀ¸ÄÑ ÀÌÃë ¶Ç´Â ºÒÄèÇÑ ¸ÀÀ» »ý¼ºÇÏ¿© ¹äÀÇ Ç°ÁúÀ» ÀúÇϽÃÅ°´Â ¿øÀÎÀÌ µÈ´Ù. »êÈ­¸¦ ¾ïÁ¦½ÃÅ°±â À§Çؼ­´Â °ø±â¿ÍÀÇ Á¢ÃËÀ» Â÷´Ü½ÃÅ°´Â °ÍÀÌ Áß¿äÇÏ´Ù. ÀÌ·¯ÇÑ ¸ñÀûÀÇ ÀÏȯÀ¸·Î º» ¿¬±¸¿¡¼­´Â ½ÒÀÇ ÀúÀå±â°£À» ¿¬Àå½ÃÅ°±â À§ÇÏ¿© ¹è¾Æ¹Ì¿Í Çö¹Ì¸¦ Áø°øÆ÷ÀåÇÑ ÈÄ ½Ç¿Â¿¡¼­ º¸°üÇϸ鼭 14ÁÖ µ¿¾È 2ÁÖ¸¶´Ù °ú»êÈ­¹°°¡¿Í »ê°¡¸¦ ºÐ¼®ÇÏ¿© »êÆеµ¸¦ ÃøÁ¤ÇÏ¿´´Ù. ºñÆ÷Àå Çö¹Ì¿Í ¹è¾Æ¹ÌÀÇ °ú»êÈ­¹°°¡´Â óÀ½ 4ÁÖµ¿¾ÈÀº ¸ðµÎ 6∼9 meq/kgÁ¤µµ·Î Â÷ÀÌ°¡ ¾ø¾úÁö¸¸, Çö¹ÌÀÇ °æ¿ì¿¡´Â 6ÁÖÈÄ¿¡´Â ¹è¾Æ¹Ìº¸´Ù »êÆа¡ »¡¸® ÁøÇàµÇ¾î Èֹ߼º ¹°ÁúÀÇ »ý¼º¿¡ µû¶ó ÀÌÃë¹Ì°¡ ³ª±â ½ÃÀÛÇÏ¿´´Ù. Áø°øÆ÷ÀåÇÑ Çö¹Ì¿Í ¹è¾Æ¹Ì´Â Áö¹æÁú ÇÔ·®ÀÇ Â÷ÀÌ ¶§¹®¿¡ Ãʱ⿡´Â °ú»êÈ­¹°°¡ 0.3 meq/kgÁ¤µµÀÇ Â÷ÀÌ°¡ ÀÖ¾ú°í, ÀúÀå°úÁ¤ Áß¿¡´Â °ú»êÈ­¹°°¡ÀÇ Â÷ÀÌ°¡ °ÅÀÇ ¾ø¾ú´Ù. »ê°¡(À¯¸®Áö¹æ»ê)ÀÇ ¾çµµ ºñÆ÷ÀåÇÑ ¹è¾Æ¹Ì¿Í Çö¹ÌÀÇ °æ¿ì¿¡´Â ÀúÀå±â°£Áß 0.5 mg/gÁ¤µµÀÇ Â÷ÀÌ°¡ ÀÖ¾úÁö¸¸, Áø°øÆ÷ÀåÀ» ÇÑ °æ¿ì¿¡´Â 8ÁÖ µ¿¾È¿¡´Â Å« Â÷ÀÌ°¡ ³ªÁö ¾Ê¾ÒÀ¸¸ç, 10ÁÖÈÄ ºÎÅÍ´Â 0.6 mg/gÁ¤µµÀÇ Â÷À̸¦ ³ªÅ¸³Â´Ù. º» ½ÇÇèÀ¸·Î ¹è¾Æ¹Ì¿Í Çö¹Ì¸¦ Áø°øÆ÷ÀåÇÒ °æ¿ì ºñÆ÷ÀåÇÏ¿´À» ¶§º¸´Ù »êÆа¡ ¾ïÁ¦µÇ¾î 10ÁÖ Á¤µµÀÇ ÀúÀå±â°£ÀÌ ¿¬ÀåµÊÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

[±¹³»³í¹®]

This study was carried out to develop a miller to produce white embryo rice with functional nutrients by improving the conventional vertical miller. The effects of rice moisture content and the shaft revolution speed of the miller on germ(embryo) adherence rate, whiteness, broken rice rate, and cracked rice rate were investigated. Also, the effect of the mesh size of emery stones on the germ adherence rate was investigated. The vertical prototype miller was improved with the increasement of about 42% in producing white embryo rice at proper conditions(shaft revolution speed of 900 rpm, emery stones of mesh ££50, processing capacity of 2.3t/h, zero outlet resistance, rice moisture content of 16.2%). The results were as follows: 1. The germ adherence rate of white rice was significantly influenced by the moisture content of brown rice. The germ adherence rate of white rice decreased rapidly with the increase of the moisture content of brown rice. When brown rice with moisture content of 13.2%, 14.5%, 15.2%, 15.4% was milled by the prototype with emery stones of mesh ££35 and shaft speed of 900(1,100) rpm, rpm adherence rate of milled rice was 76.2%(70%), 69.2%(66%), 45.9(38%), 13.0(9%), respectively. 2. The whiteness of white rice milled by the prototype with emery stones of mesh ££35 and shaft speed of 1,100(900)rpm increased from 27(23) to about 40, respectively, as the moisture content of brown rice increased from 13.2% to 17.2%. 3. The rate of broken rice of white rice milled at 900rpm decreased by 0.6¡­1.0% compared with that at 1,100rpm when the moisture content of brown rice was less than 15.2%. 4. The germ adherence rate was increased by 10.3% and 11.0%, respectively when brown rice with moisture content of 16.2% and 15.5% was milled by the prototype miller with shaft speed of 900rpm and emery stones of mesh ££50 instead of mesh ££35. 5. Considering the germ adherence rate, broken rice rate, and whiteness of milled rice, the proper milling conditions of the prototype miller for producing embryo rice were the moisture content of about 15%, the processing capacity of 2.3t/h and minimum outlet resistance of 0N¤ým with shaft speed of 900rpm and emery stones of mesh ££50.

[±¹³»³í¹®]

°Å´ë¹è¾Æ¹Ì 4Ç°Á¾°ú °¢°¢ÀÇ ÀÏ¹Ý¹Ì 4Ç°Á¾ µî 8Ç°Á¾ÀÇ Çö¹Ì¸¦ ÀÌ¿ëÇÏ¿© °£Æí½ÄÀÎ flake Á¦Á¶¿¡ ´ëÇÑ Ç°ÁúƯ¼ºÀ» ºñ±³ÇÏ¿´´Ù. ½Ò´«ÀÇ ¿µ¾ç¼ººÐÀ» ±×´ë·Î ¼·ÃëÇÒ ¼ö ÀÖ´Â °î¸³»ó Çö¹Ì flakeÀ» Á¦Á¶Çϱâ À§ÇÏ¿© ¿ì¼± ¼öħ¿Âµµ¿Í ½Ã°£º° ¿ëÃâµÈ ȯ¿ø´çÇÔ·®, ¼öºÐÈí¼öÀ², ½Ò¾ËÀÇ °æµµ¸¦ ÃøÁ¤ÇÏ¿© $60^{\circ}C$¿¡¼­ 5½Ã°£ ¼öħÇÑ ÈÄ °î¸³»ó Çö¹Ì flakeÀ» ¸¸µé¾ú´Ù. ÀϹÝÇ°Á¾À¸·Î Á¦Á¶ÇÑ flakeµé¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î Á¦Á¶ÇÑ flake°¡ ÆØÈ­µµ°¡ ³ô°í, °æµµ´Â ³·À¸¸ç, ¾Æ»è¾Æ»èÇÑ Á¤µµ°¡ ³ôÀº ¹Ù¶÷Á÷ÇÑ ¹°¼ºÀ» ³ªÅ¸³»¾ú´Ù. °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î Á¦Á¶ÇÑ flakeµéÀÇ bowl life°¡ ÀϹÝÇ°Á¾µé¿¡ ºñÇؼ­ ±ä °æÇâÀÌ ÀÖ¾úÀ¸¸ç, ƯÈ÷ ȭûÂû°Å´ë¹è¾Æ¹Ì·Î Á¦Á¶ÇÑ Çö¹Ì flakeÀÇ bowl life°¡ °¡Àå ±æ°í, ȭûº­·Î Á¦Á¶ÇÑ Çö¹Ì flakeÀÇ bowl life°¡ °¡Àå ª¾Ò´Ù. Á¦Á¶µÈ flakeÀÇ Àü¹ÝÀûÀÎ ±âÈ£µµ´Â ¸Þº­, Âûº­¿¡ »ó°ü¾øÀÌ °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î Á¦Á¶ÇÑ °ÍµéÀÌ ³ô¾ÒÀ¸¸ç, ÀÏ¹Ý Ç°Á¾°£¿¡¼­´Â Âûº­·Î Á¦Á¶ÇÑ °ÍÀÌ ¸Þº­·Î Á¦Á¶ÇÑ °Íº¸´Ù´Â À¯ÀÇÀûÀ¸·Î ³ô¾Ò´Ù. ¼öħ¿¡ µû¸¥ ¼öºÐÈí¼öÀ²Àº Á¦Á¶µÈ flakeÀÇ bowl life ¹× ¾Æ»è¾Æ»èÇÑ Á¤µµ¿Í Á¤ÀÇ »ó°ü¼ºÀ» °¡Áö¸ç Çö¹Ì flakeÀÇ ¼öºÐÈí¼öÁö¼ö´Â ÆØÈ­µµ ¹× bowl life¿Í´Â Á¤ÀÇ »ó°ü¼ºÀÌ ÀÖ¾ú´Ù. °ü´É°Ë»ç»óÀÇ °æµµ¿Í´Â ºÎÀÇ »ó°ü¼ºÀÌ ÀÖÀ½À» ¾Ë ¼ö ÀÖ¾ú´Ù. µû¶ó¼­ ½ÃÇèµÈ 8°³ÀÇ Ç°Á¾Áß¿¡¼­ ½Å¼±Âû°Å´ë¹è¾Æ¹Ì ¹× ȭûÂû°Å´ë¹è¾Æ¹Ì Ç°Á¾ÀÌ flake Á¦Á¶¿¡ °¡Àå ÀûÇÕÇÏ¿´´Ù.

[±¹³»³í¹®]

º» ¿¬±¸´Â °Å´ë¹è¾Æ¹Ì ±Þ¿©°¡ ´ç´¢¸ðµ¨ÀÇ ÁöÁú´ë»ç¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» °ËÅäÇÏ°íÀÚ ¼öÇàµÇ¾ú´Ù. ½ÇÇè¸ðµ¨Àº ½ºÆ®·¾ÅäÁ¶Åä½ÅÀ¸·Î À¯¹ßµÈ Àν¶¸° ÀÇÁ¸Çü ´ç´¢ ÈòÁ㸦 ÀÌ¿ëÇÏ¿©, ½ÇÇè½ÄÀ̸¦ 6ÁÖ°£ ±Þ¿©ÇÑ ÈÄÀÇ Ã¼³» ÁöÁúÇÔ·® ¹× ´ëº¯À¸·ÎÀÇ ¹è¼³·®À» °¢°¢ Á¶»ç ÇÏ¿´´Ù °Å´ë¹è¾Æ¹Ì¸¦ ±Þ¿©ÇÑ °æ¿ì¿¡´Â ´ç´¢°¡ À¯¹ßµÇ¾úÀ½¿¡µµ ºÒ±¸ÇÏ°í üÁß Áõ°¡ÀÇ Çö»óÀÌ ³ªÅ¸³µ°í, Àå±â ºñ´ë Çö»óÀº ¾ïÁ¦ µÇ°í ÀÖ¾ú´Ù. Ç÷û Áß¼ºÁö¹æ ¸î °£ÀÇ ÃÑ ÄÝ·¹½ºÅ×·Ñ ÇÔ·®µµ Çö¹Ì ¹× °Å´ë¹è¾Æ¹Ì ±Þ¿©±º¿¡¼­ ¾ïÁ¦È¿°ú°¡ ÀÖ¾ú´Ù. ±×¸®°í ´ëº¯À¸·Î ¹è¼³µÇ´Â ÃÑÁöÁú ¹× ÄÝ·¹½ºÅ×·ÑÀÇ ¾çµµ °Å´ë¹è¾Æ¹Ì ±Þ¿©±º¿¡¼­ ´ëÁ¶±ºº¸´Ù À¯ÀÇÇÏ°Ô ¸¹Àº °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÀÌ»óÀÇ °á°úµé·ÎºÎÅÍ °Å´ë¹è¾Æ¹Ì ½ÄÀÌ´Â Àν¶¸° ÀÇÁ¸Çü ´ç´¢Áã¿¡¼­ ´ëº¯ÁßÀÇ ÃÑ ÁöÁú ¹× ÃÑ ÄÝ·¹½ºÅ×·Ñ ¹è¼³·®ÀÇ Áõ°¡¿Í ¿¬°üÁö¾î ´ç´¢º´ ¸ðµ¨ÀÇ Ã¼³» ÁöÁú´ë»ç¿¡ °³¼±È¿°ú°¡ ÀÖÀ½À» ¾Ë ¼ö ÀÖ´Ù.

[±¹³»³í¹®]

Changes in physiological functionality of giant embryonic rice by germination process were investigatedusing 70% ethanolic extract of the rices. Physiological functionality was evaluated by determining the reducingpower, phenolic compound content, GABA content, and antimutagenicity. The results showed that the order ofreducing power of the non-germinated rices was Nampung giant embryonic rice > normal rice >Whachung giantembryonic rice, however, the activity was high as the order of Whachung giant embryonic rice > Nampung giantembryonic rice > normal rice by germination process. About 3-fold activity increase was observed for Whachunggiant embryonic rice, while, the activity of Nampung giant embryonic rice and normal rice decreased by the sametreatment. The phenolic compound content of three rice cultivars were found to be almost same levels. Germinationof rice increased the content of phenolic compounds by 2.6-fold without any considerable changes for both Nampunggiant embryonic rice and normal rice. The GABA contents was highest in Whachung giant embryonic rice, followedby Nampung giant embryonic rice, normal rice in either germination or non-germination condition. The germinationincreased the GABA contents by more than 2.4-fold for all rice cultivars tested. We also found an increase in theantimutagenic activity by germination process for all cultivars, where the activity was the greatest for Whachungcultivar.

[ÇØ¿Ü³í¹®]

Recently developed black waxy rice with a giant embryo (¡®Nunkeunheukchal¡¯, BGE) was selected and processed to produce high quality nutritional food. BGE contains high levels of several phytochemicals with antioxidant activities, as well as other reported health beneficial properties. In addition, the giant embryo has high protein, lipid, and amino acids contents. Within the free amino acids, ¥ã-aminobutyric acid (GABA), a major inhibitory neurotransmitter, has long been used for treating the aftereffects of brain injuries and stroke. A method for manufacturing pop-rice and black rice tea by popping process in BGE is provided to increase a taste, nutrition and functionality. The produced ¡®pop-rice¡¯ showed increased protein (11.3%) and lipid (3.7%) contents compared with control variety, IB (¡®Ilmibyeo¡¯). In addition, melanoidin related products, polyphenol and functional amino acid contents were increased by the popping process. Pop-rice tea made of BGE showed the highest extraction of total sugar, glucose, raffinose and sucrose (4 times higher than brown rice) by hot water. Scavenging activity (SC50) of processed BGE rice powder showed strong antioxidative activity of 0.24 mg/ml using DPPH and 1.82 mg/ml using ABTs method. Thereafter, these results suggested that the popping processed rice of BGE could be one of the promising materials for healthy food development.

[±¹³»³í¹®]

Antioxidant activity of ethanolic extract of two giant embryonic rices, Nampung giant embryonic rice andHwachung giant embryonic rice, were investigated mainly focusing on their ability to inhibit lipid peroxidation andscavenge reactive oxygen species in comparison with those of general rice. The results showed that germinationprocess increased reducing power, inhibitory activity on lipid peroxidation and scavenging ability either on superoxideor hydroxyl radicals. Among the cultivars tested, increase in antioxidative action was found to be most prominentfor Hwachung giant embryonic rice cultivar. For scavenging of superoxide radicals, the extract from Nampung giantembryonic rice has the most potent activity, however, increasing rate of scavenging activity by germination processwas also found to be the greatest for Hwachung giant embryonic rice. We found that the scavenging mechanism forsuperoxide radicals was attributed to the direct scavenging of the radicals. The scavenging of hydroxyl radicals, themost toxic oxygen radical to biological system, by the rice extracts were also examined, and the results showed thateither overall activity or the increasing rate of the activity to scavenge hydroxyl radicals by germination process wasthe greatest for Hwachung giant embryonic rice. Moreover, the results suggested that the scavenging action tohydroxyl radicals might be mediated by direct quenching of the radicals, not by chelating Fe2+. Further studiesshowed that the antioxidant action of the rice extracts tested in vitro was also operative for suppressing ROSproduction induced in TPA-stimulated HL-60 cells.

[ÇØ¿Ü³í¹®]

ÃéÀå¿¡ ${\beta}-cell$¿¡¸¸ ƯÀÌÀûÀ¸·Î ÀÛ¿ëÇÏ°í ´Ù¸¥ ±â°ü¿¡´Â ¿µÇâÀ» ÁÖÁö ¾Ê´Â °ÍÀ¸·Î º¸°íµÇ¾î ÀÖ´Â streptozotocinÀ» ÈòÁã¿¡°Ô Åõ¿©ÇÏ¿© ´ç´¢º´À» À¯¹ß½ÃŲ ´ÙÀ½ ¹é¹Ì, Çö¹Ì, °Å´ë¹è¾Æ¹Ì¸¦ 6ÁÖ°£ ±Þ¿©ÇÑ ÈÄ Ç÷´ç°­È­ È¿°ú¸¦ ¾Ë¾Æº¸¾Ò´Ù. ½ÇÇè±â°£µ¿¾È ¸ðµç ´ç´¢±ºµéÀÇ Ã¼ÁßÁõ°¡´Â Á¤»ó±º¿¡ ºñÇؼ­´Â À¯ÀÇÀûÀ¸·Î ³·¾Ò´Ù. ´ç´¢´ëÁ¶±º¿¡ ºñÇؼ­´Â °Å´ë¹è¾Æ¸¶¸¦ ±Þ¿©ÇÑ ±º¿¡¼­ üÁß°¨¼ÒÇö»óÀÌ ¾ïÁ¦µÇ¾ú´Ù. Àå±âÁß ¸ÍÀåÀÇ °æ¿ì 2¹è ÀÌ»óÀÇ ºñ´ëÇö»óÀÌ ³ªÅ¸³µ°í Á¤»óÁã¿¡ ºñÇØ ´ç´¢Áã°¡ ¼öºÐ¼·Ãë·®, ¼Òº¯¹è¼³·®, Ç÷´çÀÌ À¯ÀÇÀûÀ¸·Î ³ô°Ô ³ªÅ¸³µ´Âµ¥ ´ç´¢º´ÀÇ ÁÖ¿ä Áõ¼¼°¡ ´Ù°¥(polydipsia), ´Ù´¢(polyuria), ´Ù½Ä(polyphagia), °íÇ÷´çÀÎÁ¡¿¡¼­ ´ç´¢±º¿¡ ºñÇؼ­ °¡´ë¹è¾Æ¹Ì´Â ´ç´¢Áõ¼¼°¡ ¾î´À Á¤µµ È£ÀüÈ¿°ú°¡ ÀÖÀ½À» º¸¿©ÁÖ°í ÀÖ´Ù. ½ÄÀ̼·Ãë·®Àº Á¤»ó±º¿¡ ºñÇØ ´ç´¢½ÇÇ豺µéÀÌ ³ô°Ô ³ªÅ¸³µÀ¸¸ç ¼öºÐ¼·Ãë·®Àº Á¤»ó±º¿¡ ºñÇØ ´ç´¢´ëÁ¶±ºÀÌ ¼öºÐ ¼·Ãë·®Áõ°¡°¡ ³ªÅ¸³µ´Ù. ´ç´¢½ÇÇ豺 ³»¿¡¼­´Â ´ç´¢´ëÁ¶±º¿¡ ºñÇØ °¡´ë¹è¾Æ¹Ì±ºÀÌ ¼öºÐ¼·Ãë·®ÀÌ °¨¼ÒÇÏ¿´´Ù. ´¢ ¹è¼³·®Àº Á¤»ó±º¿¡ ºñÇØ ´ç´¢´ëÁ¶±ºÀÌ À¯ÀÇÀûÀ¸·Î ³ô°Ô ³ªÅ¸³µÀ¸¸ç ´ç´¢´ëÁ¶±º¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì±ºÀÌ °¨¼ÒÇÏ¿´´Ù. Àå ±â´É Á¶Àý·Î¼­ ÀåÅë°ú ½Ã°£°ú ºÐº¯°íÇü¹°ÀÇ ¾ç¿¡´Â ¿ªÀÇ »ó°ü°ü°è·Î ½ÄÀ̼¶À¯¼ÒÀÇ ÇÔ·®ÀÌ ³ôÀº ½Ò Ç°Á¾ÀÎ °Å´ë¹è¾Æ¹Ì´Â ÀåÅë°ú ½Ã°£ÀÌ ÂªÀ¸¸ç ºÐº¯°íÇü¹°ÀÇ ¾çÀ» À¯ÀÇÀûÀ¸·Î Áõ°¡½ÃÄ×À¸¸ç º¯ÀÇ ¼öºÐº¸À¯·®µµ Á¤»ó±º¿¡ ºñÇØ ´ç´¢½ÇÇ豺µéÁß °Å´ë¹è¾Æ¹Ì±º Àü¹ÝÀûÀ¸·Î ³ô¾Ò´Ù. À§ °á°ú¿¡¼­ °Å´ë¹è¾Æ¹Ì ±Þ¿©°¡ ´ç´¢µ¿¹°ÀÇ °øº¹½Ã Ç÷´ç ¼öÁØÀ» À¯ÀÇÀûÀ¸·Î ³·Ãߴµ¥ È¿°ú°¡ ÀÖ¾úÀ¸¸ç ÀÌ´ç·ù ºÐÇØ È¿¼Ò È°¼ºÀÇ °æ¿ì Á¤»ó±º¿¡ ºñÇؼ­ ´ç´¢±ºÀÌ lactase, maltase, sucrase È°¼ºÀÌ ÇöÀúÇÏ°Ô Áõ°¡ µÇ¾úÁö¸¸ ´ç´¢½ÇÇ豺Áß¿¡´Â °Å´ë¹è¾Æ¹Ì°¡ ¼ÒÀåÁ¡¸·ºÎºÐÀÇ lactase, maltase, sucraseÀÇ È°¼ºÀ» ÀúÇؽÃÅ´À¸·Î¼­ Ç÷´ç»ó½ÂÀ» ¾ïÁ¦½ÃÅ°´Â °ÍÀ¸·Î º¼ ¼ö ÀÖ¾ú´Ù. ÀÌ»óÀÇ °á°ú·Î ¹é¹Ì, Çö¹Ì¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì¸¦ ±Þ¿©ÇÑ ´ç´¢µ¿¹°¿¡¼­ Ç÷´çÀ» ¾ïÁ¦½ÃÅ°´Â È¿°ú¸¦ º¸¾Ò´Ù.

[±¹³»³í¹®]

A new Japonica variety, ¡®Keunnun¡¯ was induced from the mutants of N-methyl-N-nitrosourea (MNU) treatment on fertilized egg cell of Ilpumbyeo by a rice breeding team of National Institute of Crop Science, RDA, in 2005. This variety has about 136 days of growth duration from transplanting to harvesting and a midium-maturty with heading date of August 17 in central plain area of Korea. It has resistance to lodging with strong culm and good semi-elect plant type. The number of panicles/hill of ¡®Keunnun¡¯ is more than that of Hwaseongbyeo. ¡®Keunnun¡¯ has a giant-embryo and richer GABA content than that of Ilpumbyeo after 2 days¡¯ germination in sprouting brown rice. It is susceptible to leaf blast, bacterial blight, virus disease and insect pests. The yield performance of this variety is about 4.52 MT/ha in milled rice in local adaptability test for three years from 2003 to 2005. ¡®Keunnun¡¯ is one of cultivars adaptable to central and southern plain area of Korea.

[±¹³»³í¹®]

70% ethanolic extracts were prepared from the three mutant rice cultivars with giant embryo termedShinsunchal-giant embryonic rice, Whachung-giant embryonic rice and Nampung-giant embryonic rice, and itsantioxidative and antimutagenic properties were evaluated and compared. For analysing antioxidativity, variousantioxidative indices, such as electron donating ability to DPPH radical, scavenging capacity to hydroxyl radicalsgenerated by Fenton reaction, scavenging capacity to superoxide radicals generated by HPX/XOD system, inhibitoryeffect on autoxidation of linoleic acid and inhibitory effect on membrane lipid peroxidation derived from rabbiterythrocyte ghost, were determined. For analysing antimutagenicity, suppressive effects on mutagenesis induced bythe chemical mutagen, mitomycin C, were measured using E. coli PQ 37 as a indicator cell. The results showed thatfor both antioxidativity and antimutagenicity the giant embryonic rices were more effective compared to the generalcooking rice. Among the giant embryonic rice cultivars, Nampung-giant embryonic rice tended to be most effective,showing its scavenging activity to DPPH radical, superoxide radical and hydroxyl radical, and inhibitory activity to lipid peroxidation was 2.3-, 3.3-, 1.7-, and 2.5-fold greater than those of normal rice, respectively.

[±¹³»³í¹®]

StreptozotocinÀ¸·Î ´ç´¢¸¦ À¯¹ßÇÑ Áã¿¡¼­ °Å´ë¹è¾Æ¹ÌÀÇ ±Þ¿©°¡ Ç÷Àå ¹× °£Á¶Á÷ÀÇ ÁöÁú°ú»êÈ­¹°°ú Ç×»êÈ­È¿¼Ò¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¶»çÇÏ¿´´Ù. ½ÇÇè±â°£µ¿¾È ¸ðµç ´ç´¢±ºµéÀÇ Ã¼ÁßÁõ°¡´Â Á¤»ó±º¿¡ ºñÇؼ­´Â À¯ÀÇÀûÀ¸·Î ³·¾Ò´Ù. °Å´ë¹è¾Æ¹Ì¸¦ ±Þ¿©ÇÑ ±ºÀº ´ç´¢´ëÁ¶±º¿¡ ºñÇؼ­ üÁß°¨¼ÒÇö»óÀÌ ¾ïÁ¦µÇ¾úÀ¸¸ç, ½ÄÀ̼·Ãë·®Àº Á¤»ó±º¿¡ ºñÇØ ´ç´¢´ëÁ¶±ºµéÀÌ ³ô°Ô ³ªÅ¸³µ´Ù. Àå±â¹«°Ô´Â ´ç´¢±ºÀÌ ´ç´¢´ëÁ¶±ºº¸´Ù ³ô¾ÒÀ¸³ª °Å´ë¹è¾Æ¹Ì¸¦ Æ÷ÇÔÇÑ ½Ò½ÄÀ̱º¿¡¼­´Â ³·°Ô ³ªÅ¸³µ°í, Ç÷´çÀÇ º¯È­´Â ´ç´¢´ëÁ¶±º¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì±ºÀÌ °¨¼ÒÇÏ´Â °æÇâÀ» º¸¿´´Ù. Ç÷Àå ¹× °£Á¶Á÷ ÁßÀÇ ÁöÁú°ú»êÈ­¹°Àº ´ç´¢´ëÁ¶±º¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì°¡ ³·Àº ¼öÁØÀÇ ÁöÁú°ú»êÈ­¹° °ªÀ» º¸¿´´Ù. Ç÷ÀåÁßÀÇ ºñŸ¹Î A¿Í EÀÇ ³óµµ´Â ´ç´¢´ëÁ¶±ºÀÌ Á¤»ó±º¿¡ ºñÇؼ­ À¯ÀÇÀûÀ¸·Î °¨¼ÒÇÏ¿´À¸¸ç ´ç´¢´ëÁ¶±º¿¡ ºñÇØ °Å´ë¹è¾Æ¹Ì±Þ¿©±ºÀÌ À¯ÀÇÀûÀ¸·Î ³ô°Ô ³ªÅ¸³µ´Ù. °£Á¶Á÷ÀÇ Ç×»êÈ­ È¿¼Ò Áß SODÀÇ È°¼ºÀº °Å´ë¹è¾Æ¹Ì±ºÀÌ ´ç´¢´ëÁ¶±º¿¡ ºñÇÏ¿© ³ô¾Ò´Ù. ÀÌ»óÀÇ °á°ú¿¡¼­ °Å´ë¹è¾Æ¹Ì¸¦ ±Þ¿©ÇÑ ´ç´¢ÁãÀÇ ³·Àº ÁöÁú°ú»êÈ­¹°°ª°ú ³ôÀº Ç×»êÈ­°è È¿¼ÒÀÇ È°¼ºÀÌ °£Á¶Á÷ÀÇ »êÈ­Àû ¼Õ»óÀ» °¨¼Ò½ÃÅ°´Â ¿øÀÎÀ¸·Î »ý°¢µÈ´Ù.

[ÇØ¿Ü³í¹®]

°Å´ë¹è¾Æ¹Ì 4Ç°Á¾°ú °¢°¢ÀÇ ÀÏ¹Ý¹Ì 4Ç°Á¾ µî 8Ç°Á¾ÀÇ Çö¹Ì¸¦ ÀÌ¿ëÇÏ¿© °£Æí½ÄÀÎ flake Á¦Á¶¿¡ ´ëÇÑ Ç°ÁúƯ¼ºÀ» ºñ±³ÇÏ¿´´Ù. ½Ò´«ÀÇ ¿µ¾ç¼ººÐÀ» ±×´ë·Î ¼·ÃëÇÒ ¼ö ÀÖ´Â °î¸³»ó Çö¹Ì flakeÀ» Á¦Á¶Çϱâ À§ÇÏ¿© ¿ì¼± ¼öħ¿Âµµ¿Í ½Ã°£º° ¿ëÃâµÈ ȯ¿ø´çÇÔ·®, ¼öºÐÈí¼öÀ², ½Ò¾ËÀÇ °æµµ¸¦ ÃøÁ¤ÇÏ¿© $60^{\circ}C$¿¡¼­ 5½Ã°£ ¼öħÇÑ ÈÄ °î¸³»ó Çö¹Ì flakeÀ» ¸¸µé¾ú´Ù. ÀϹÝÇ°Á¾À¸·Î Á¦Á¶ÇÑ flakeµé¿¡ ºñÇؼ­ °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î Á¦Á¶ÇÑ flake°¡ ÆØÈ­µµ°¡ ³ô°í, °æµµ´Â ³·À¸¸ç, ¾Æ»è¾Æ»èÇÑ Á¤µµ°¡ ³ôÀº ¹Ù¶÷Á÷ÇÑ ¹°¼ºÀ» ³ªÅ¸³»¾ú´Ù. °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î Á¦Á¶ÇÑ flakeµéÀÇ bowl life°¡ ÀϹÝÇ°Á¾µé¿¡ ºñÇؼ­ ±ä °æÇâÀÌ ÀÖ¾úÀ¸¸ç, ƯÈ÷ ȭûÂû°Å´ë¹è¾Æ¹Ì·Î Á¦Á¶ÇÑ Çö¹Ì flakeÀÇ bowl life°¡ °¡Àå ±æ°í, ȭûº­·Î Á¦Á¶ÇÑ Çö¹Ì flakeÀÇ bowl life°¡ °¡Àå ª¾Ò´Ù. Á¦Á¶µÈ flakeÀÇ Àü¹ÝÀûÀÎ ±âÈ£µµ´Â ¸Þº­, Âûº­¿¡ »ó°ü¾øÀÌ °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î Á¦Á¶ÇÑ °ÍµéÀÌ ³ô¾ÒÀ¸¸ç, ÀÏ¹Ý Ç°Á¾°£¿¡¼­´Â Âûº­·Î Á¦Á¶ÇÑ °ÍÀÌ ¸Þº­·Î Á¦Á¶ÇÑ °Íº¸´Ù´Â À¯ÀÇÀûÀ¸·Î ³ô¾Ò´Ù. ¼öħ¿¡ µû¸¥ ¼öºÐÈí¼öÀ²Àº Á¦Á¶µÈ flakeÀÇ bowl life ¹× ¾Æ»è¾Æ»èÇÑ Á¤µµ¿Í Á¤ÀÇ »ó°ü¼ºÀ» °¡Áö¸ç Çö¹Ì flakeÀÇ ¼öºÐÈí¼öÁö¼ö´Â ÆØÈ­µµ ¹× bowl life¿Í´Â Á¤ÀÇ »ó°ü¼ºÀÌ ÀÖ¾ú´Ù. °ü´É°Ë»ç»óÀÇ °æµµ¿Í´Â ºÎÀÇ »ó°ü¼ºÀÌ ÀÖÀ½À» ¾Ë ¼ö ÀÖ¾ú´Ù. µû¶ó¼­ ½ÃÇèµÈ 8°³ÀÇ Ç°Á¾Áß¿¡¼­ ½Å¼±Âû°Å´ë¹è¾Æ¹Ì ¹× ȭûÂû°Å´ë¹è¾Æ¹Ì Ç°Á¾ÀÌ flake Á¦Á¶¿¡ °¡Àå ÀûÇÕÇÏ¿´´Ù.

[ÇØ¿Ü³í¹®]

º» ¿¬±¸´Â °Å´ë¹è¾Æ¹Ì ±Þ¿©°¡ ´ç´¢¸ðµ¨ÀÇ ÁöÁú´ë»ç¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» °ËÅäÇÏ°íÀÚ ¼öÇàµÇ¾ú´Ù. ½ÇÇè¸ðµ¨Àº ½ºÆ®·¾ÅäÁ¶Åä½ÅÀ¸·Î À¯¹ßµÈ Àν¶¸° ÀÇÁ¸Çü ´ç´¢ ÈòÁ㸦 ÀÌ¿ëÇÏ¿©, ½ÇÇè½ÄÀ̸¦ 6ÁÖ°£ ±Þ¿©ÇÑ ÈÄÀÇ Ã¼³» ÁöÁúÇÔ·® ¹× ´ëº¯À¸·ÎÀÇ ¹è¼³·®À» °¢°¢ Á¶»ç ÇÏ¿´´Ù °Å´ë¹è¾Æ¹Ì¸¦ ±Þ¿©ÇÑ °æ¿ì¿¡´Â ´ç´¢°¡ À¯¹ßµÇ¾úÀ½¿¡µµ ºÒ±¸ÇÏ°í üÁß Áõ°¡ÀÇ Çö»óÀÌ ³ªÅ¸³µ°í, Àå±â ºñ´ë Çö»óÀº ¾ïÁ¦ µÇ°í ÀÖ¾ú´Ù. Ç÷û Áß¼ºÁö¹æ ¸î °£ÀÇ ÃÑ ÄÝ·¹½ºÅ×·Ñ ÇÔ·®µµ Çö¹Ì ¹× °Å´ë¹è¾Æ¹Ì ±Þ¿©±º¿¡¼­ ¾ïÁ¦È¿°ú°¡ ÀÖ¾ú´Ù. ±×¸®°í ´ëº¯À¸·Î ¹è¼³µÇ´Â ÃÑÁöÁú ¹× ÄÝ·¹½ºÅ×·ÑÀÇ ¾çµµ °Å´ë¹è¾Æ¹Ì ±Þ¿©±º¿¡¼­ ´ëÁ¶±ºº¸´Ù À¯ÀÇÇÏ°Ô ¸¹Àº °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÀÌ»óÀÇ °á°úµé·ÎºÎÅÍ °Å´ë¹è¾Æ¹Ì ½ÄÀÌ´Â Àν¶¸° ÀÇÁ¸Çü ´ç´¢Áã¿¡¼­ ´ëº¯ÁßÀÇ ÃÑ ÁöÁú ¹× ÃÑ ÄÝ·¹½ºÅ×·Ñ ¹è¼³·®ÀÇ Áõ°¡¿Í ¿¬°üÁö¾î ´ç´¢º´ ¸ðµ¨ÀÇ Ã¼³» ÁöÁú´ë»ç¿¡ °³¼±È¿°ú°¡ ÀÖÀ½À» ¾Ë ¼ö ÀÖ´Ù.

[±¹³»³í¹®]

ȭûÂûº­, ȭûº­, ±×¸®°í À̵éÀÇ °Å´ë¹è¾Æ¹Ì Ç°Á¾ÀΠȭûÂû°Å´ë¹è¾Æ¹Ì, ȭû°Å´ë¹è¾Æ¹Ì µî 4Ç°Á¾ÀÇ ½Ò·ÎºÎÅÍ ÀüºÐÀ» ºÐ¸®ÇÏ¿© ¸î¸î ÀÌÈ­ÇÐÀû Ư¼ºÀ» ºñ±³ÇÏ¿´´Ù. °Å´ë¹è¾Æ Ç°Á¾À¸·Î À¯±âµÇ¸é¼­ ¾Æ¹Ð·Î¿À½ºÀÇ ÇÔ·®Àº °¨¼ÒÇÏ°í ÀÖ¾úÀ¸¸ç, ¾Æ¹Ð·Î¿À½º ºÐȹÀÇ Æ÷µµ´ç »ç½½ÀÇ ±æÀ̵µ ª¾ÆÁö°í ÀÖ¾ú´Ù. ¾Æ¹Ð·ÎÆåƾÀÇ ¹Ì¼¼±¸Á¶´Â °Å´ë¹è¾Æ Ç°Á¾À¸·Î À¯±âµÊ¿¡ µû¶ó B chainÀÇ »ç½½±æÀÌ°¡ ¾à°£¾¿ Áõ°¡ÇÏ´Â °æÇâÀÌ ÀÖ°í, A chainÀÇ ¾çÀº °¨¼ÒÇÏ°í ÀÖ¾úÀ¸¸ç, ¾Æ¹Ð·ÎÆåƾÀ» ±¸¼ºÇÏ´Â Æ÷µµ´çÀÇ Æò±Õ »ç½½±æÀÌ´Â ¾à°£¾¿ Áõ°¡ÇÏ°í ÀÖ¾ú´Ù. X¼± ȸÀýµµ»ó¿¡¼­´Â 4Ç°Á¾ ¸ðµÎ ÀüÇüÀûÀÎ A typeÀ̾úÀ¸¸ç, glucoamylase¿¡ ÀÇÇÑ °¡¼öºÐÇصµ´Â ÂûÇ°Á¾ÀÇ °æ¿ì¿¡´Â °Å´ë¹è¾Æ¹Ì·Î À¯±âµÇ¸é¼­ °¡¼öºÐÇصµ°¡ ³·¾ÆÁö´Âµ¥ ºñÇؼ­ ¸ÞÇ°Á¾ÀÇ °æ¿ì¿¡´Â ¹Ý´ëÀÇ °á°ú¸¦ ¾ò¾ú´Ù. ȣȭÁ¾·á¿Âµµ´Â °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î À¯±âµÊ¿¡ µû¶ó ³·¾ÆÁö°í ÀÖ¾ú°í, ȣȭ ¿£Å»ÇÇ´Â °Å´ë¹è¾Æ¹Ì Ç°Á¾À¸·Î À¯±âµÊ¿¡ µû¶ó Áõ°¡ÇÏ°í ÀÖ¾ú´Ù.

[±¹³»³í¹®]

Effects on the feeds of streptozotocin-induced diabetic rats with a giant embryonic rice on lipid peroxides level and antioxidative enzyme activites in plasma and liver tissues were investigated.Along with the experimental periods, all animals in diabetic groups had a lower increase rate in body weight than the normal control group. A giant embryonic rice-fed group showed a inhibition in the decrease of body weight, and a increase in feed intake compared to the normal control group. The organ weights of the diabetic control group were heavier than those of the normal control while rice-fed groups including the giant embryonic rice-fed group were found to have lower organ weights, and its blood sugar level was found to be lower than those of the normal group.Lipid peroxides of the giant embryonic rice-fed animals showed a lower lipid peroxidation values compared to that of the diabetic control group. Plasma vitamin A and E concentrations of the diabetic control group were significantly decreased compared to the normal control while those of the giant embryonic rice-fed group were found to be significantly higher than those of the diabetic control.Of the hepatic antioxidative enzymes, SOD activity of the giant embryonic rice-fed group was higher than that of the diabetic control group. Taken these together, low lipid peroxidation valuesand, in contrast, high antioxidative enzyme activities were thought to be a cause for decreasing hepatic oxidative damages.

[±¹³» ÇÐÀ§³í¹®]

¿µ¹®ÃÊ·Ï : Adipocyte differentiation is a complicated process, which is regulated by several transcription factors such as C/EBPs, PPAR¥ã, and ADD1/SREBP1c. Among these, C/EBP¥â is expressed immediately and promotes adipogenesis through the cooperation with C/EBP¥á and PPAR¥ã. We reported that the inhibitory effect of red yeast rice extracts (RE) on adipocyte differentiation is mediated through the down-regulation expression of C/EBP¥á and PPAR¥ã, and adipogenic-specific genes, aP2 and leptin protein expression. In present study, we investigated the involvement of C/EBP¥â protein expression by RE treatment in 3T3-L1 preadipocyte. RE inhibited the expression of C/EBP¥â in early stage of differentiation and modulated the C/EBP¥á and PPAR¥ã protein expression. Thus, these results suggest that RE suppressed adipocyte differentiation through down regulation of C/EBP¥â expression in early stage of differentiation in 3T3-L1 preadipocyte

[±¹³» ÇÐÀ§³í¹®]

º» ¿¬±¸¿¡¼­´Â ¹è¾Æ¹Ì, Çö¹Ì, ±â´É¼º½Ò ¹× Áø°øÀ» ¿äÇÏ´Â ½ÄÇ°ÀÇ Ç°ÁúÀ» º¸Á¸Çϱâ À§Çؼ­ ¿¬¼Ó½Ä ÀÚµ¿Áø°øÆ÷Àå±â¸¦ °³¹ßÇÏ¿´´Ù. ¿¬¼Ó½Ä ÀÚµ¿Áø°øÆ÷Àå±âÀÇ ÃÖÀûÈ­ ¼³°è¸¦ Çϱâ À§ÇÏ¿© ±â´ÉÀû °¡»ó½ÃÀÛ±â±â¼úÀ» ÀÌ¿ëÇÑ Áø°øÆ÷Àå±âÀÇ ÆĶó¹ÌÅÍÈ­µÈ 3Â÷¿ø °¡»ó½ÃÀ۱⸦ ¸ðµ¨¸µ, ½Ã¹Ä·¹À̼ÇÇϴµ¥ ÁÖ¸ñÀûÀ» µÎ¾ú´Ù. °³¹ßµÈ ÀÚµ¿Áø°øÆ÷Àå±âÀÇ ¼º´ÉÀ» Æò°¡Çϱâ À§ÇÏ¿© ÇÔ¼öÀ²ÀÇ ¼Õ½Ç ¹× º¯»öÀÌ ½±°Ô ÀϾ´Â ¹è¾Æ¹Ì¸¦ ÁÖ´ë»óÀ¸·Î Æ÷Àå ¹× ÀúÀå½ÇÇèÇÏ¿´´Ù. °³¹ßÇÑ ÀÚµ¿Áø°øÆ÷Àå±âÀÇ 3Â÷¿ø ¸ðµ¨Àº ¾ÐÃàÆǺÎ, Å×ÀÌÇκΠ¹× Áøµ¿ÆǺηΠÀÌ·ç¾îÁ®ÀÖ´Ù. °³¹ßÇÑ 3Â÷¿ø ¸ðµ¨Àº Æ÷´ëµÎ²², ¾ÐÃàÆÇ ¹× Áøµ¿ÆÇÀ» ±¸µ¿½ÃÅ°´Â Ä·ÀÇ Æí½É µîÀ» ÀÌ¿ëÇÏ¿© ÆĶó¹ÌÅÍÈ­½ÃÄ×´Ù. °¡»ó½ÃÀÛ±â´Â 3°³ÀÇ °¡»ó¸ðÅÍ¿¡ ÀÇÇÏ¿© ±¸µ¿µÈ´Ù. ÀÚµ¿Áø°øÆ÷Àå±â´Â Æ÷´ë±Ô°Ý 45 cm¡¿ 35 cmÀÇ Æ÷ÀåÀ» ÃÖ´ë 󸮴ɷ 6Æ÷/ºÐÀÇ Ã³¸®´É·ÂÀ» °®Ãß±â À§ÇÏ¿© °¢ ±¸µ¿¸ðÅÍÀÇ ¿îµ¿¸ð¼ÇÀ» ÀûÀýÇÏ°Ô ¼³°èÇÏ¿´´Ù. ¼³°èÇÑ ¿îµ¿¸ð¼Ç¿¡ ÀÇÇÑ °¢ ±¸µ¿¸ðÅÍÀÇ ±¸µ¿½Ã ÇÊ¿ä·Î ÇÏ´Â ÀûÁ¤¼Ò¿äµ¿·ÂÀº °¢°¢ 100 W, 25 W, 90 W·Î °áÁ¤ÇÏ¿´´Ù. ±×¸®°í ¹Î°¨µµ ºÐ¼®À» ÀÌ¿ëÇÏ¿© ¾ÐÃàÆÇ ¹× Áøµ¿ÆÇÀ» ±¸µ¿½ÃÅ°´Â Ä·ÀÇ Æí½ÉÀ» 70 mm ¹× 1 mm·Î °¢°¢ °áÁ¤ÇÏ¿´´Ù. ÀÚµ¿Áø°øÆ÷Àå±âÀÇ ½ÇÁ¦ ½ÃÀ۱⸦ Á¦ÀÛÇÑ ÈÄ ¼³°èÇÑ ¿îµ¿¸ð¼ÇÀ» °¢ ±¸µ¿¸ðÅÍ¿¡ Àû¿ëÇÏ¿© ½Ã¹Ä·¹À̼ÇÀÇ °á°ú¸¦ °ËÁ¤ÇÏ¿´´Ù. °£·«È­µÈ 3Â÷¿ø ½ÃÀ۱⸦ ÀÌ¿ëÇÏ¿© ¼±Á¤ÇÑ ¸ðÅ͵éÀº ½ÇÁ¦ ½ÃÀÛ±âÀÇ °¢ ÁÖ¿äºÎ¸¦ ¿øÈ°ÇÏ°Ô ±¸µ¿ÇÒ ¼ö ÀÖ¾ú´Ù. ¼³°èÇÑ ¿îµ¿¸ð¼ÇÀº ¿ä±¸µÈ ÀÛµ¿½ÃÄö½º¸¦ ¸¸Á·½ÃÄ×À¸¸ç À̶§ ÀÚµ¿Áø°øÆ÷Àå±âÀÇ Ã³¸®´É·ÂÀº 6.7Æ÷/ºÐÀ̾ú´Ù. °³¹ßÇÑ ÀÚµ¿Áø°øÆ÷Àå±â´Â ¾ÐÃàÆǺÎ, Áøµ¿ÆǺÎ, Å×ÀÌÇκΠ¹× °¡½ºÁÖÀԽýºÅÛÀ¸·Î ÀÌ·ç¾îÁ®ÀÖ´Ù. ½ÇÁ¦ ½ÃÀÛ±âÀÇ ¼º°ø·üÀº ¾à 92.6%À̾ú°í ½ÇÆÐÀ² 7.4%¿´À¸¸ç Áø°øÆ÷Àå±â ÀÚü¿¡¼­ ºÒ¿ÏÀü Å×ÀÌÇÎÀÇ ¹ÐºÀÀÛ¾÷À¸·Î Áø°øÀÌ ¼­¼­È÷ Ç®¸®´Â °æ¿ì°¡ 5.5%, ±×¸®°í Áø°øÇϱâ Àü ÀÚµ¿ºñ´ÒÆ÷Àå±â¿¡¼­ Æ÷Àå½Ã ºÀÁö À­ºÎºÐ ¹ÐºÀÀÌ ºÒ¿ÏÀüÇØ 1.9%°¡ Áø°øÀÌ Ç®·È´Ù. ÀÌ¿¡ °³¹ßÇÑ ÀÚµ¿Áø°øÆ÷Àå±âÀÇ Áø°øÆ÷À强°ø·üÀº ¾à 94.5% ¼öÁØÀ̾ú´Ù. Áø°øÆ÷Àå±â·Î Áø°ø½Ã°£¿¡ µû¸¥ Áø°øµµ¸¦ ÃøÁ¤ÇÏ¿´°í, ¹è¾Æ¹Ì 2, 3, 5 kg¸¦ Áø°øÆ÷ÀåÇϴµ¥ ¼Ò¿äµÇ´Â ½Ã°£Àº °¢°¢ 6, 8, 11 s¿´´Ù. Áø°øÆ÷ÀåÀ¸·Î ó¸®ÇÑ ¹è¾Æ¹Ì¿Í Áø°øÆ÷Àåó¸®ÇÏÁö ¾ÊÀº ¹è¾Æ¹Ì¸¦ °¢°¢ 3°³¿ù°£ ÀúÀå½ÇÇèÇÏ¿© ¹éµµ, ÇÔ¼öÀ², °ú»êÈ­¹°°¡, »ê°¡¸¦ ÀúÀå±â°£º°·Î ºÐ¼®ÇÏ¿´´Ù. ±× °á°ú, ¹éµµ´Â Áø°ø󸮰¡ 2 °¨¼Ò, ºñ󸮰¡ 4 °¨¼ÒÇÏ¿´°í, ÇÔ¼öÀ²Àº Áø°ø󸮰¡ 0.8% °¨¼Ò, ºñ󸮰¡ 1.3% °¨¼Ò, °ú»êÈ­¹°°¡´Â Áø°ø󸮰¡ ÃÖ´ë 1.89 meq/kg±îÁö ¼­¼­È÷ Áõ°¡ÇÏ¿´°í, ºñ󸮰¡ 3.45 meq/kg±îÁö ±Þ¼ÓÈ÷ Áõ°¡ÇÏ¿´´Ù°¡ ¼­¼­È÷ °¨¼ÒÇÏ¿´´Ù. »ê°¡ ¿ª½Ã Áø°ø󸮰¡ ÃÖ´ë 0.71 mg/g±îÁö ¼­¼­È÷ Áõ°¡ÇÏ¿´°í, ºñó¸®ÀÇ °æ¿ì´Â 0.98 mg/g±îÁö ±Þ¼ÓÈ÷ Áõ°¡ÇÏ¿´´Ù. ±×¸®°í Çö¹ÌÀÇ Áø°øÆ÷Àå¿¡¼­µµ »ê°¡ ¹× °ú»êÈ­¹°°¡ º¯È­°¡ ¹è¾Æ¹Ì °æ¿ì¿Í ºñ½ÁÇÏ¿´´Ù. ¶ÇÇÑ Áø°øÆ÷Àå Á¦Ç°¿¡ ÀÎÀ§ÀûÀ¸·Î ½Ò¹ú·¹µéÀ» ³ÖÀº °æ¿ì 15ÀÏ Áö³ª¸é »ê¼ÒºÎÁ·À¸·Î ¸ðµÎ »ç¸êÇÏ¿´´Ù. µû¶ó¼­ °³¹ßÇÑ Áø°øÆ÷Àå±â·Î Áø°øÆ÷ÀåÇÑ °æ¿ì ¹è¾Æ¹Ì ¹× Çö¹ÌÀÇ Ç°ÁúÀ» Àß À¯ÁöÇÒ ¼ö ÀÖ¾ú´Ù.

[±¹³» ÇÐÀ§³í¹®]

Giant embryo rice is a mutant rice with an enlarged embryo and has higher nutritional value compared with the normal embryo rice. It is rich in minerals, protein, vitamins, and essential amino acids High amounts of gamma-oryzanol and gamma-aminobutytic acid (GABA) have also been found in giant embryo rice mutants. The effects of giant embryo brown rice Seonong 17 and Keunnunjami, in comparison with that of the ordinary normal brown rice, on Physicochemical Characteristics, antioxidant activity of ethanol extract, two-dimensional gel electrophoresis, the body weight, lipid profile, glucose metabolism and antioxidative defense system in mice under high fat diet condition was investigated.

/ 2

Filters

º¸±âÇü½Ä

Á¤·Ä¼ø¼­

Æ÷¸Ë

¸®½ºÆ® ¼ö