HOME / ¹®¼­°øÀ¯ / /

(¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë - ½æ³×ÀÏ 1page
1/24
  • 1 page
  • 2 page
  • 3 page
  • 4 page
  • 5 page
  • 6 page
  • 7 page
  • 8 page
  • 9 page
  • 10 page
  • 11 page
  • 12 page
  • 13 page
  • 14 page
  • 15 page
  • 16 page
  • 17 page
  • 18 page
  • 19 page
  • 20 page
  • 21 page
  • 22 page
  • 23 page
  • 24 page

(¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë

¼­½Ä¹øÈ£
TZ-SHR-1046156
µî·ÏÀÏÀÚ
2019.08.01
ºÐ·®
24 page / 2.97 MB
Æ÷ÀÎÆ®
700 Point ¹®¼­°øÀ¯ Æ÷ÀÎÆ® Àû¸³¹æ¹ý ¾È³»
ÆÄÀÏ Æ÷¸Ë
Microsoft PowerPoint (pptx)
Èıâ Æò°¡

0

0°ÇÀÇ Èı⺸±â

µî·ÏÀÚ

ky***** ºê·ÐÁî

µî±Þº° ÇýÅú¸±â

(¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë¿¡ ´ëÇØ ±â¼úÇÑ ¸®Æ÷Æ® Âü°íÀÚ·áÀÔ´Ï´Ù.

  • Microsoft PowerPoint (pptx)Microsoft PowerPoint (pptx)
ÀÀ¿ë±¸Á¶´Ü¹éÁú¿ø¸®Proteomics±¸Á¶ºÐ¼®ºÐ¼®ºÐ¾ß
¿¬°ü ÃßõÀÚ·á
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #1    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #2    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #3
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #4    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #5    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #6
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #7    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #8    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #9
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #10    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #11    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #12
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #13    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #14    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #15
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #16    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #17    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #18
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #19    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #20    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #21
 (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #22    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #23    (¿µ¹®) ProteomicsºÐ¾ß¿¡¼­ÀÇ ´Ü¹éÁú ±¸Á¶ºÐ¼® ¿ø¸®ÀÇ ÀÀ¿ë #24

  circular dichroism spectrophotometry (cds)  
¡¦ useful for determining protein secondary structures.
cf.circular dichroism: an optical phenomenon that occurs when molecules in solution are exposed to circularly polarized light.
protein shows different absorption spectra in left and right circularly-polarized light.cd using 160 and 240 nm generates distinct and characteristic spectra for protein alpha-helix and beta-sheets.
synchrotron radiation cd allows the rapid structural classification of large numbers of proteins.
additional methods for structural analysis (1)
1    neutron diffraction  
¡¦ used much less frequently than x-ray diffraction.the advantage of this method is that neutron are scattered by hydrogen atoms, which cannot be seen by x-rays.
electron diffraction (electron microscopy)  

¡¦ used to study protein that crystallize or neutrally assemble into two-dimensional crystals (e. g

tublin). the single molecules can be analyzed in the same way as crystalline arrays, allowing the structures of large protein complexes to be determined without crystallization

additional methods for structural analysis (2)
2    
the technology for solving protein structure remains a labor-
intensive expensive process.
an alternative is to predict protein structures using bioinformatic methods¡¦ currently, it is possible to predict secondary structures in hypothetical proteins quite accurately from first principles but tertiary structures requires a template on which the model can be based.
techniques for modeling protein structure  3    
there are three-state predictions; helix (h), extended beta-
strand (e), coli (c).
some amino acids, such as glu, have a helical propensity (i.e.they are more likely to occur in alpha-helix than elsewhere in the protein) while others, such as val, have a strand propensity.(table 6.4)
e.g.leu, gly and pro  
multiple alignments can remove much of this uncertainty by identifying conserved blocks of residues that favor the formation of helices or strands.
predicting protein secondary structures from sequence data (1)
4    
table 6.4
predicting protein secondary structures from sequence data (2)
5       (ÀÌÇÏ »ý·«)

¹ÞÀº º°Á¡

0/5

0°³ÀÇ º°Á¡

¹®¼­°øÀ¯ ÀڷḦ µî·ÏÇØ ÁÖ¼¼¿ä.
¹®¼­°øÀ¯ Æ÷ÀÎÆ®¿Í Çö±ÝÀ» µå¸³´Ï´Ù.

Æ÷ÀÎÆ® : ÀÚ·á 1°Ç´ç ÃÖ´ë 5,000P Áö±Þ

Çö±Ý : ÀÚ·á 1°Ç´ç ÃÖ´ë 2,000¿ø Áö±Þ

ÈıâÀÛ¼º»ç¿ëÈı⸦ ÀÛ¼ºÇÏ½Ã¸é ¹®¼­°øÀ¯ 100 point¸¦ Àû¸³ÇØ µå¸³´Ï´Ù.

¼­½Äº°Á¡ ¡Ù¡Ù¡Ù¡Ù¡Ù

0/120

»ç¿ëÈıâ (0)

µî·ÏµÈ ¸®ºä°¡ ¾ø½À´Ï´Ù.

ù¹ø° ¸®ºä¾î°¡ µÇ¾îÁÖ¼¼¿ä.

ÀÌÀü1´ÙÀ½