NDSL 75,958 Link page¿¡¼­ [¿ø¹®º¸±â] ¹öÆ°À» Ŭ¸¯Çϼ¼¿ä.

[±¹³» ÇÐÀ§³í¹®]

°ÇÁ¶ ¼ö»êÇ°À» ´ë»óÀ¸·Î ¹æ»ç¼± Á¶»ç¿©ºÎ ÆǺ°À» À§ÇÏ¿© ¹°¸®Àû ¹æ¹ý(PSL, TL, ESR)À» ÀÌ¿ëÇÏ¿© Á¶»ç¿©ºÎ¸¦ È®ÀÎÇÏ¿´´Ù. ¶ÇÇÑ TL ¹æ¹ý¿¡ µû¸¥ density separation¹ý°ú acid hydrolysis¹ýÀ» ÀÌ¿ëÇÏ¿© ºÐ¸®¹æ¹ý¿¡ µû¸¥ TL glow curve type°ú TL ratio Ư¼ºÀ» ºñ±³ÇÏ¿´À¸¸ç, °ÇÁ¶ ¼ö»êÇ°ÀÇ Àû¿ë °¡´É¼º°ú ºÐ¸®¹æ¹ý¿¡ µû¸¥ ¹Ì³×¶ö Á¶¼º(X-ray diffratometer) Ư¼ºÀ» ºñ±³ÇÔÀ¸·Î½á °ÇÁ¶ ¼ö»êÇ°ÀÇ ¹æ»ç¼± Á¶»ç¸¦ ÆǺ°Çϴµ¥ ÇÊ¿äÇÑ ±â¼ú ÀڷḦ ¸¶·ÃÇÏ¿´´Ù. PSL ÃøÁ¤ °á°ú, ºñÁ¶»ç ½Ã·á´Â threshold value(T1)°¡ 700º¸´Ù ³·Àº photon counts(PCs)¸¦ ³ªÅ¸³»¾î ºñÁ¶»ç ½Ã·á·Î ±¸º°µÇ¾ú´Ù. Á¶»çµÈ ¸êÄ¡, »õ¿ì, Á¶°¹»ìÀº ¼±·®¿¡ °ü°è¾øÀÌ ¸ðµÎ 5000 ÀÌ»óÀÇ PCs¸¦ ³ªÅ¸³»¾î Á¶»ç¿©ºÎ È®ÀÎÀÌ °¡´ÉÇÏ¿´´Ù. È«ÇÕÀº 5 kGy ÀÌ»ó, µðÆ÷¸®´Â 10 kGy ½Ã·á¿¡¼­ Á¶»ç¿©ºÎ È®ÀÎÀÌ °¡´ÉÇÏ¿´°í ´ë±¸, ÁãÆ÷, ºÏ¾î, µðÆ÷¸®, °¥Ä¡, ³ë°¡¸®, °¡ÀÚ¹Ì, ²ÇÄ¡ ¿À¡¾î, ÇÑÄ¡, ²Ã¶Ñ±â´Â ¸ðµç Á¶»ç½Ã·á¿¡¼­ negative ¶Ç´Â intermediate°ªÀ» ³ªÅ¸³»¾î PSL ¿ÜÀÇ ´Ù¸¥ È®Áõ¹æ¹ýÀÌ ÇÊ¿äÇÏ¿´´Ù. ESR ÃøÁ¤ °á°ú, ºñÁ¶»ç ½Ã·á¿¡¼­´Â ´ëĪÀûÀÎ unspecific central ESR signalÀ» º¸¿´À¸³ª, Á¶»çµÈ ½Ã·áÀÇ °æ¿ì ³ë°¡¸®´Â 1, 5, 10 kGy, ´ë±¸, ºÏ¾î, °¥Ä¡, µðÆ÷¸®, °¡Àڹ̴ 5, 10 kGy, ¸êÄ¡, ²ÇÄ¡´Â 10 kGy¿¡¼­¸¸ Á¶»çÀ¯·¡ÀÇ radical Áß hydroxyapatite radical À¯·¡ÀÇ Æ¯À¯ÇÑ signalÀ» ³ªÅ¸³»¾î Àû¿ë°¡´É¼ºÀÌ È®ÀεǾú´Ù. ÁãÆ÷, ¿À¡¾î, ÇÑÄ¡, ²Ã¶Ñ±â, È«ÇÕ, Á¶°¹»ì, »õ¿ì¿¡¼­´Â unspecific central ESR signalÀ» ³ªÅ¸³»¾î Á¶»ç¿©ºÎ È®ÀÎÀÌ ºÒ°¡´ÉÇÏ¿´´Ù. TL ºÐ¼® °á°ú, ºñÁ¶»ç ½Ã·á¿¡¼­´Â µÎ ºÐ¸®¹æ¹ý¿¡¼­ ¸ðµÎ TL glow peakÀÇ ¿Âµµ¹üÀ§°¡ 250¡É ÀÌÈÄ¿¡¼­, Á¶»ç½Ã·á¿¡¼­´Â 150¡­250¡É ¹üÀ§¿¡¼­ Á¶»ç À¯·¡ÀÇ glow curve¸¦ ³ªÅ¸³»¾î Á¶»ç¿©ºÎÀÇ È®ÀÎÀº °¡´ÉÇÏ¿´´Ù. ÇÏÁö¸¸ TL glow curve ¸ð¾ç¿¡ À־´Â DS¹ý º¸´Ù AH¹ý¿¡¼­ º¸´Ù ºÐ¸íÇÑ peak ÇüŸ¦ º¸¿´´Ù. TL ºÐ¼®¿¡ ÀÌ¿ëµÇ´Â ±¤¹°ÁúÀº 1Â÷ TL ÃøÁ¤(TL1)¿¡ ÀÇÇØ ¹æ»ç¼± Á¶»ç¿¡ ÀÇÇØ »ý¼ºµÈ ¿¡³ÊÁö ÈçÀûÀÌ ¸ðµÎ »ç¶óÁö°Ô µÈ´Ù. µû¶ó¼­ ÃøÁ¤ÇÑ ±¤¹°Áú¿¡ ´Ù½Ã ÀçÁ¶»ç(1 kGy)ÇÏ¿© TL ÃøÁ¤(TL2)À» ÇÏ°í TL1°ú TL2ÀÇ ¹ß±¤°î¼±ÀÇ ¸éÀûÀ» ºñ±³(TL ratio, TL1/TL2)ÇÔÀ¸·Î½á TL1 ºÐ¼®°á°úÀÇ ½Å·Ú¼ºÀ» È®ÀÎÇÒ ¼ö ÀÖ´Ù. TL ratioÀÇ ºñ±³¿¡¼­´Â AH¹ýÀÇ ºñÁ¶»ç ½Ã·á´Â 0.1 ÀÌÇÏ(negative), Á¶»ç½Ã·á´Â 0.1 ÀÌ»ó(positive)À» ³ªÅ¸³»¾î Á¶»ç¿©ºÎ ÆǺ°ÀÌ °¡´ÉÇÏ¿´´Ù. ±×·¯³ª DS¹ýÀº 1 kGy Á¶»çµÈ °¥Ä¡, ²ÇÄ¡, ºÏ¾î¿Í 5 kGy Á¶»çµÈ ²ÇÄ¡¿¡¼­ 0.1 ÀÌÇÏÀÇ °ª(negative)À» ³ªÅ¸³¿À¸·Î½á DS¹ýÀÇ ¹®Á¦Á¡ÀÌ È®ÀεǾú´Ù. µû¶ó¼­ °ÇÁ¶¼ö»êÇ°ÀÇ Á¶»ç¿©ºÎ TLÆǺ°¿¡¼­´Â DS¹ýº¸´Ù´Â AH¹ý Àû¿ëÀÌ ÇÊ¿äÇÑ °ÍÀ¸·Î ÆǴܵǾú´Ù. XRD(X-ray Diffractometer) ºÐ¼®°á°ú, »õ¿ì¿Í Á¶°¹»ìÀÇ DS¹ý°ú AH¹ýÀ¸·Î ºÐ¸®ÇÑ ¹Ì³×¶öÀº quartz, Na-feldsparÀÇ ÇÔ·®¿¡ Å« Â÷ÀÌ°¡ ¾ø¾ú´Ù. ±×·¯³ª ³ë°¡¸®¿Í ºÏ¾î´Â DS¹ýÀ¸·Î ºÐ¸®ÇÑ quartz ¾çÀÌ Na-feldspar ¾çº¸´Ù ¸¹¾ÒÀ¸¸ç, AH¹ýÀº Na-feldspar ¾çÀÌ quartz ¾çº¸´Ù ¸¹À½À¸·Î½á ¹Ì³×¶ö ºÐ¸®¹æ¹ý¿¡ µû¸¥ Â÷ÀÌ°¡ È®ÀεǾú´Ù. ÀÌ»óÀÇ °á°ú¿¡¼­ º¼ ¶§ °ÇÁ¶ ¼ö»êÇ°Àº PSL, ESR¿¡¼­ screening ¸ñÀûÀ¸·Î ÀÌ¿ëÇÑ Á¶»ç¿©ºÎ È®ÀÎÀÌ ºÎºÐÀûÀ¸·Î È®ÀεǾúÀ¸¸ç, TL ºÐ¼®¿¡¼­ º¸´Ù Á¤È®ÇÑ °á°ú¸¦ ¾ò±â À§ÇÏ¿© DS¹ý º¸´Ù AH¹ýÀ» Àû¿ëÇÏ´Â °ÍÀÌ È¿°úÀûÀÎ Á¶»ç¿©ºÎ¸¦ ÆǺ°ÇÏ´Â ¹æ¹ýÀÓÀ» ¾Ë ¼ö ÀÖ¾ú´Ù.

[±¹³»³í¹®]

In this paper we introduce the notions of TL-subsystems strong TL-subsystems and discuss their basic properties.

[±¹³» ȸÀÇÀÚ·á]

We introduce the notion of TL-p-subgroups that is an extension of the notion of fuzzy p-subgroups and show that a torsion TL-subgroup of an Abelian group with T=∧ can be written as the intersection of its minimal TL-p-subgroups.

[±¹³»³í¹®]

We investigate some conditions for a TL-subgroup to be written as the intersection of its all the least TL-p-subgroups.

[±¹³»³í¹®]

¾Ë·Î¿¡ º£¶ó(Aloe barbadensis Miller)ºÐ¸»¿¡ ´ëÇÑ ¹æ»ç¼± Á¶»ç ¿©ºÎ¸¦ È®ÀÎÇϱâ À§ÇØ 1, 3, 5, 7 kGy·Î °¨¸¶¼± Á¶»ç¸¦ ½Ç½ÃÇÏ¿© PSL, TL ¹× ESR ºÐ¼®À» ½Ç½ÃÇÏ¿´´Ù. PSLÀÇ °æ¿ì ºñÁ¶»ç ½Ã·á¿¡¼­´Â 700ÀÌÇÏÀÇ photon count¸¦ ³ªÅ¸³»¾úÀ¸¸ç, 1 kGyÀÌ»ó Á¶»çµÈ ½Ã·á¿¡¼­´Â 5000ÀÌ»óÀÇ photon count¸¦ ³ªÅ¸³»¾î PSLÀ» ÅëÇÑ Á¶»çµÈ ¾Ë·Î¿¡ ºÐ¸»ÀÇ °ËÁö°¡ °¡´ÉÇÒ °ÍÀ¸·Î »ç·áµÈ´Ù. TLºÐ¼® °á°ú¿¡¼­´Â 1 kGyÀÌ»ó Á¶»çµÈ ½Ã·áÀÇ ¹Ì³×¶ö¿¡¼­ $150^{\circ}C$ ÀüÈÄ¿¡ TL glow curve $(TL_1)$¸¦ È®ÀÎÇÒ ¼ö ÀÖ¾ú°í, Á¶»ç¼±·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó $TL_1$ ¹× TL ratio $(TL_1/TL_2)$¸ðµÎ Áõ°¡ °æÇâÀ» ³ªÅ¸³»¾ú´Ù. ÇÑÆí ÀüÀÚ½ºÇÉ°ø¸í (ESR)ºÐ¼® °á°ú¿¡¼­´Â tripletÇüÅÂÀÇ ESR signalÀº È®ÀÎ ÇÒ ¼ö ¾ø¾úÀ¸³ª, Á¶»çÀü·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó signalÀÇ Å©±â°¡ Áõ°¡ÇÏ¿´´Ù. º» ¿¬±¸°á°ú PSL, TL ¹× ESRºÐ¼®À¸·Î ¾Ë·Î¿¡ º£¶ó ºÐ¸»ÀÇ Á¶»ç¿©ºÎ¸¦ È®ÀÎÇÒ ¼ö ÀÖ¾úÀ¸¸ç ƯÈ÷, ILºÐ¼®À¸·Î´Â Á¶»ç¼±·®ÀÇ Á¤·®Àû ¿¹ÃøÀÌ °¡´ÉÇÒ °ÍÀ¸·Î »ç·áµÇ¾ú´Ù.

[±¹³»³í¹®]

ÇöÀç Áß±¹À¸·ÎºÎÅÍ ¼öÀÔ·®ÀÌ Áõ°¡ÇÏ°í ÀÖ´Â ¶¥ÄáÀ» ´ë»óÀ¸·Î ±¹»ê°ú Áß±¹»ê ½Ã·áÀÇ TL, ESR, DNA comet(single cell gel electrophoresis) ºÐ¼®À» ½Ç½ÃÇÏ¿© ¿ø»êÁöº° Ư¼ºÀ» ºñ±³ÇÏ¿´´Ù. Density separation ¹æ¹ýÀ¸·Î ÃßÃâÇÑ ¹Ì³×¶öÀÇ TLÃøÁ¤ °á°ú, °¨¸¶¼± Á¶»çµÇÁö ¾ÊÀº ½Ã·á´Â 25$0^{\circ}C$ ºÎ±Ù¿¡¼­ intensity°¡ ³·Àº glow curve¸¦ ³ªÅ¸³»¾ú°í, Á¶»ç ½Ã·á´Â 18$0^{\circ}C$ ºÎ±Ù¿¡¼­ ¾ÆÁÖ °­ÇÑ intensityÀÇ glow curve¸¦ º¸¿©ÁÖ¾ú´Ù. ù ¹ø° ÃøÁ¤µÈ glow curve(TL$_1$)ÀÇ normalizationÀ» À§ÇÏ¿© ÀçÁ¶»ç ¹æ¹ý¿¡ ÀÇÇØ TL$_2$¸¦ ÃøÁ¤ÇÏ¿© TL ratio(TL$_1$/TL$_2$)¸¦ ºñ±³ÇØ º» °á°ú, ºñÁ¶»ç ½Ã·á´Â 0.05 ÀÌÇÏ, Á¶»ç ½Ã·á´Â 0.2ÀÌ»óÀ¸·Î ¹æ»ç¼± Á¶»ç ¿©ºÎÀÇ ÆǺ°ÀÌ °¡´ÉÇÏ¿´´Ù. ¶¥Äá²®ÁúÀ» »ç¿ëÇÑ ESR ÃøÁ¤¿¡¼­´Â Á¶»ç À¯·¡ÀÇ Æ¯ÀÌÀûÀÎ signalÀÌ ³ªÅ¸³ªÁö ¾Ê¾Æ Àû¿ë °¡´É¼ºÀÌ ³·¾Ò´Ù. DNA comet assay °á°ú, ºñÁ¶»ç ½Ã·á´Â tailÀÌ ¾ø°Å³ª ¾ÆÁÖ ÂªÀº ÀüÇüÀûÀÎ intact cellÀ» ³ªÅ¸³½ ¹Ý¸é, Á¶»ç ½Ã·á´Â long tailÀ» °¡Áø cometÀ» ³ªÅ¸³»¸é¼­ ¼±·® ÀÇÁ¸ÀûÀ¸·Î (r=0.761/Korean, r=0.768/Chinese) tail length°¡ Áõ°¡ÇÏ¿© Á¶»ç ¿©ºÎÀÇ È®ÀÎÀÌ °¡´ÉÇÏ¿´´Ù. ¸ðµç ½ÇÇè¿¡¼­ ¿ø»êÁöº° Â÷ÀÌ´Â Å©Áö ¾Ê¾Ò´Ù. ÀÌ»óÀÇ °á°ú·Î º¼ ¶§ ¶¥ÄáÀÇ ¹æ»ç¼± Á¶»ç ¿©ºÎ È®Àο¡´Â TL ºÐ¼® ¹× DNA comet assay°¡ Àû¿ë °¡´ÉÇÏ¿´´Ù.

[ÇØ¿Ü³í¹®]

In this paper, we introduce the notions of TL-submodules of a module and TL-linear subspaces of a linear space and show some of their properties, T being an arbitrary infinitely @?-distributive t-norm on a given complete Brouwerian lattice L. We also give out two methods for constructing TL-submodules of a quotient module and study the TL-submodules and TL-linear subspaces generated by L-subsets.

[±¹³»³í¹®]

°¢Á¾ °¡°ø½ÄÇ° ¿ø·á·Î »ç¿ëµÇ°í ÀÖ´Â °ÇÁ¶ ä¼Ò·ù Áß Ç¥°í¹ö¼¸, ½Ã±ÝÄ¡, ¹«Ã», ¹Ì³ª¸®, ¹«, È£¹Ú µî 6Á¾¿¡ ´ëÇÏ¿© 1, 4, 7 kGyÀÇ ¼±·®À¸·Î °¨¸¶¼±À» Á¶»çÇÏ°í, photostimulated luminescence kGy¿Í thermoluminescence (TL) µî ¹°¸®Àû ºÐ¼®¹æ¹ýÀ» ÀÌ¿ëÇÏ¿© °¨¸¶¼± Á¶»ç ¿©ºÎ¸¦ È®ÀÎÇÏ¿´´Ù. PSL ÃøÁ¤¿¡¼­ ºñÁ¶»ç Ç¥°í¹ö¼¸, ½Ã±ÝÄ¡, ¹«Ã», ¹Ì³ª¸®, ¹« ¹× È£¹Ú¿¡¼­´Â °¢°¢ $194.0{\pm}223.4,\;695.5{\pm}26.2,\;598.0{\pm}4.2,\;266.5{\pm}9.2,\;503.0{\pm}190.9$ ¹× $270.5{\pm}245.4$ ¼öÁØÀÇ photon count°¡ ÃøÁ¤µÇ¾î ºñÁ¶»ç ½Ã·áÀÇ ¹üÀ§(700 ÀÌÇÏÀÇ °ª)¿¡ ¼ÓÇÏ¿´À¸¸ç, 1 kGy ÀÌ»ó Á¶»ç±º¿¡¼­´Â ¸ðµÎ ¹æ»ç¼± Á¶»ç½Ã·áÀÇ ¹üÀ§ÀÎ 5000 ÀÌ»óÀÇ photon count¸¦ ³ªÅ¸³»¾ú´Ù. ¶ÇÇÑ 6Á¾ÀÇ ½Ã·á¿¡ ´ëÇØ TLºÐ¼®À» ½Ç½ÃÇÑ °á°ú, ºñÁ¶»ç±ºÀÇ TL ratio$(TL_1/TL_2)$´Â 0.021 ÀÌÇϸ¦, 1 kGy ÀÌ»ó Á¶»ç±º¿¡¼­´Â 0.653 ÀÌ»óÀ¸·Î ³ªÅ¸³ª º» ¿¬±¸¿¡ »ç¿ëµÈ 6Á¾ÀÇ °ÇÁ¶ ä¼Ò·ù´Â PSL°ú TLºÐ¼®¿¡ ÀÇÇØ Á¶»ç¿©ºÎÀÇ °ËÁö°¡ °¡´ÉÇÑ °ÍÀ¸·Î È®ÀεǾú´Ù.

[±¹³» ȸÀÇÀÚ·á]

º» ¿¬±¸´Â TL 9000 ¿ä°Ç: R 2.5 Àû¿ë ÇØ¿Ü º£½ºÆ® ÇÁ·¢Æ¼½º, TL 9000 ¼º°úÁöÇ¥: R 2.5 Àû¿ë ÇØ¿Ü º£½ºÆ® ÇÁ·¢Æ¼½º, Supplier Diversity Àû¿ë ÇØ¿Ü º£½ºÆ® ÇÁ·¢Æ¼½º ¹× TL 9000 Ç°Áú½Ã½ºÅÛ ±¸Ãà ±¹³» ÇÁ·¢Æ¼½º¸¦ ¼Ò°³ÇÑ´Ù.

[±¹³»³í¹®]

±¹³»¿¡¼­ »ý»êµÈ ³ó»ê¹°ÀÇ ¹æ»ç¼± Á¶»çÀ¯¹«¸¦ È®ÀÎÇϱâ À§ÇÏ¿© TLÀ» ÃøÁ¤ÇÏ¿´´Ù. ¸ðµç ½Ã·áÀÇ first glow curve´Â Á¶»ç¼±·®ÀÌ Áõ°¡ÇÒ¼ö·Ï TL intensityµµ Áõ°¡ÇÏ´Â °æÇâÀ» º¸¿© ÁÖ¾ú´Ù. ´ç±Ù, »ý°­, °¨ÀÚ, °í±¸¸¶ÀÇ »ó°ü°è¼ö´Â 0.8522, 0.9968, 0.9612, 0.9071ÀÇ ³ôÀº °ªÀ» ³ªÅ¸³»¾úÀ¸¸ç, first glow curveÀÇ ÃÖ´ë¹ß±¤¿ÂµµÁ¡Àº $176.16{\sim}190.08^{\circ}C$»çÀÌ¿¡ ÀÖ¾ú°í, second glow curve´Â $143.84{\sim}146.56^{\circ}C$ »çÀÌ¿¡¼­ ³ªÅ¸³µ´Ù. Glow curve ratio 1Àº °¨ÀÚ¿Í °í±¸¸¶¸¦ Á¦¿ÜÇÏ°í ¸ðµÎ 0.1º¸´Ù ÀÛÀº ¼öÄ¡¸¦ º¸¿© ºñÁ¶»ç½Ã·á·Î È®ÀεǾúÀ¸¸ç, °¨ÀÚ(0.1840)¿Í °í±¸¸¶(0.1655)´Â 0.1º¸´Ù Å« ¼öÄ¡¸¦ º¸¿´À¸³ª µ¶Æ¯ÇÑ first glow curve°¡ ³ªÅ¸³ªÁö ¾ÊÀº Á¡À¸·Î º¸¾Æ ºñÁ¶»ç½Ã·á·Î È®ÀεǾú´Ù. ±×¸®°í ¸ðµç ½Ã·áÀÇ glow curve ratio 2´Â 0.7159º¸´Ù ³ôÀº ¼öÄ¡¸¦ ³ªÅ¸³»¾î Á¶»ç½Ã·á·Î È®ÀεǾú´Ù. Glow curveÀÇ ¸ð¾çÀ» ºÐ¼®ÇÑ °á°ú second glow curveÀÇ ¸ð¾çÀÌ first glow curveÀÇ À¯»çÇÏ¿´°í, ´õ ³·Àº ¿Âµµ¿¡¼­ ³ªÅ¸³µ´Ù. µû¶ó¼­ glow curve ratio¿Í glow curveÀÇ ¸ð¾ç¿¡ ÀÇÇØ Á¤È®ÇÏ°Ô Á¶»çÀ¯¹«¸¦ È®ÀÎÇÒ ¼ö ÀÖ¾ú°í TLÀ» ÀÌ¿ëÇÏ¿© ¹æ»ç¼± Á¶»çµÈ ³ó»ê¹°ÀÇ °ËÁö°¡ °¡´ÉÇÔÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

[±¹³»³í¹®]

ÃÖ±Ù °³¹ßµÈ ¹æ»ç¼±·® ÃøÁ¤¿ë LiF:Mg,Cu,Na,Si TL ¼ÒÀÚÀÇ ±Û·Î¿ì °î¼±, ¹æÃ⽺ÆåÆ®·³, ±¤ÀÚ¿¡ ´ëÇÑ ¼±·®ÀÇÁ¸¼º, ¿¡³ÊÁöÀÇÁ¸¼º ¹× ÆäÀÌÆà µî°ú °°Àº ¹°¸®Àû ¹× ¼±·®°èÀû Ư¼ºµéÀ» ¿¬±¸ÇÏ¿´´Ù. LiF:Mg,Cu,Na,Si TL ¼ÒÀÚ´Â LiF:Mg,Cu,Na,Si TL ºÐ¸»¿¡ ¾Ð·ÂÀ» °¡ÇÑ ÈÄ ¼Ò°áÇÏ´Â ¹æ¹ýÀ¸·Î Á¦Á¶µÇ¾ú´Ù. ¹æ»ç¼±¿¡ ´ëÇÑ Æ¯¼ºÀ» ¾Ë¾Æº¸±â À§ÇÏ¿© ±¤ÀÚ¼± Á¶»ç´Â Çѱ¹¿øÀڷ¿¬±¸¼ÒÀÇ X¼± ¹ß»ý ÀåÄ¡ ¹× $^{137}Cs$ ${\gamma}$¼± ¿ø°ÝÁ¶»çÀåÄ¡¸¦ ÀÌ¿ëÇÏ¿´À¸¸ç, »ç¿ëµÈ ±¤ÀÚ¼± ¿¡³ÊÁö ¹üÀ§´Â 20-662keV, ¼±·® ¹üÀ§´Â $10^{-6}-10^{-2}\;Gy$À̾ú´Ù. ±Û·Î¿ì °î¼±Àº ¼öµ¿ÇüÀÇ TLD Æǵ¶ÀåÄ¡ (System 310, Teledyne)·Î Áú¼Ò¸¦ È긮¸é¼­ ¼±ÇüÀûÀÎ °¡¿­·ü·Î ÃøÁ¤ÇÏ¿´À¸¸ç, TL °­µµ´Â ±Û·Î¿ì °î¼±À» Àüü ÀûºÐÇÑ ¸éÀûÀ¸·Î Æò°¡ÇÏ¿´´Ù. $5^{\circ}C\;s^{-1}$ÀÇ ¼±ÇüÀûÀÎ °¡¿­·ü·Î ÃøÁ¤ÇÑ ±Û·Î¿ì °î¼±Àº 5°³ÀÇ ÇÇÅ©µé·Î ºÐ¸®µÇ¾úÀ¸¸ç, $234^{\circ}C$¿¡ ³ªÅ¸³ª´Â ÁÖÇÇÅ©ÀÇ È°¼ºÈ­¿¡³ÊÁö´Â 2.34 eV, Áøµ¿¼öÀÎÀÚ´Â $1.00{\times}10^{23}$ÀÌ°í, ¹æÃ⽺ÆåÆ®·³Àº 410nm¸¦ Áß½ÉÀ¸·ÎÇÑ ´ÜÀÏÇÑ ºÐÆ÷·Î ³ªÅ¸³µ´Ù. ¼±·®ÀÇÁ¸¼ºÀº 100Gy ÀÌ»ó±îÁö ¼±Çü¼ºÀ» ³ªÅ¸³»¾úÀ¸¸ç, $^{137}Cs$¿¡ ´ëÇÑ Àú¿¡³ÊÁö ±¤ÀÚÀÇ »ó´ëÀûÀÎ ¿¡³ÊÁö ¹ÝÀÀ°ªÀº 20% ¹üÀ§ À̳»¿´´Ù. ¶ÇÇÑ ½Ç¿Â¿¡¼­ 1³â°£ º¸°üÇÏ¿´À» ¶§, ½Ã°£°æ°ú¿¡ µû¸¥ TL °¨µµÀÇ °¨¼Ò°¡ °ÅÀÇ ¾ø´Â ÁÁÀº ÆäÀ̵ù Ư¼ºÀ» º¸¿´´Ù.

[ÇØ¿Ü³í¹®]

AbstractIn this paper, the notion of the radicals of L-subsets and TL-ideals of a ring is introduced and studied, where T is an infinitely ∨-distributive t-norm on a given complete Brouwerian lattice L. Our main objective is to present basic properties about the radicals of TL-ideals in preparation for the forthcoming two papers.

[ÇØ¿Ü³í¹®]

The scintillation decay and the pulse shape discrimination properties of Tl activated CsBr and RbI crystals have been studied in the temperature range from -60oC to +250oC. The decay depends in a characteristic way on the temperature of the crystal and the type of the particle used. It is shown that the differences in shape between gamma-ray and alpha-particle pulses are sufficient to be used for pulse shape discrimination.

[±¹³»³í¹®]

°ÇÁ¶ ä¼Ò·ù Áß °ÇÁ¶ ¾çÆÄ ¹× ¸¶´Ã¿¡ ´ëÇÏ¿© °¨¸¶¼± Á¶»ç(1,4,7kGy)¿¡ µû¸¥ °ËÁöƯ¼ºÀ» photostimulated luminescence(PSL), thermoluminescence(TL) ¹× electron spin resonance (ESR)ºÐ¼®¿¡ ÀÇÇØ È®ÀÎÇÏ¿´´Ù. PSLºÐ¼® °á°ú, °ÇÁ¶ ¾çÆÄ ½Ã·á´Â ¼³Á¤µÈ negative$(\leq1700)$ ¹× Positive$(\geq5000)$ ±âÁØ¿¡ ¸Â°Ô ºñÁ¶»ç±º°ú Á¶»ç±ºÀÇ Â÷À̸¦ ½±°Ô È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. ±×·¯³ª °ÇÁ¶ ¸¶´ÃÀÇ °æ¿ì 1 ¹× 4 kGy Á¶»ç±ºÀº $700\~5000$ ¹üÀ§ÀÇ photon counts (intermediate)¸¦ º¸¿´À¸³ª 7kGy Á¶»ç±º¿¡¼­´Â positiveÇÑ °á°ú¸¦ ³ªÅ¸³»¾ú´Ù. ¹Ý¸é, TL ºÐ¼® °á°ú¿¡¼­´Â 1kGy ÀÌ»óÀ¸·Î Á¶»çµÈ µÎ ½Ã·á ¸ðµÎ $150^{\circ}C$ ÀüÈÄ¿¡¼­ TL glow curve $(TL_1)$¸¦ ³ªÅ¸³»¾î Á¶»ç ¿©ºÎÀÇ È®ÀÎÀÌ °¡´ÉÇÏ¿´´Ù. ¶ÇÇÑ TL ratio $(TL_1/TL_2)$ÀÇ ÃøÁ¤Àº TL °ËÁö°á°úÀÇ ½Å·Ú¼ºÀ» ³ô¿©ÁÖ¾ú´Ù. ESR ºÐ¼®¿¡¼­´Â µÎ ½Ã·á ¸ðµÎ ºñ ƯÀÌÀûÀÎ signalÀÌ °üÂûµÇ¾î Àû¿ëÀÌ ºÒ°¡´ÉÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù.

[±¹³»³í¹®]

ħÃâÂ÷¿Í ¼Ò½º·ù, ÀüºÐ·ùÀÇ °¢ Ç°¸ñ¿¡ ´ëÇÏ¿© PSL°ú TLÀÇ Àû¿ë °¡´É¼ºÀ» °ËÅäÇϱâ À§ÇÏ¿© °¢ Ç°¸ñº°·Î ´Ù¸¥ ¼±·®À¸·Î ¹æ»ç¼± Á¶»ç¸¦ ½Ç½ÃÇÏ¿© PSL°ú TL ºÐ¼®À» ÇÏ¿´´Ù. ħÃâÂ÷ 2Á¾Àº 0, 2, 7kGy, ¼Ò½º·ù 2Á¾Àº 0, 5, 7, 10 kGy, ÀüºÐ·ù 3Á¾Àº 0, 2, 5 kGy·Î Á¶»ç¸¦ ½Ç½ÃÇÏ¿´´Ù. PSLÀÇ ºÐ¼® °á°ú, ħÃâÂ÷´Â ºñÁ¶»ç±¸¿¡¼­´Â threshold value $T_1$(700) ÀÌÇÏÀÇ ³·Àº °ªÀ» ³ªÅ¸³»¾ú°í 2kGy ÀÌ»óÀÇ Á¶»ç±¸¿¡¼­´Â $T_2$(5000) ÀÌ»óÀÇ ³ôÀº °ªÀ» ³ªÅ¸³»¾î ¹æ»ç¼± Á¶»ç ¿©ºÎ È®ÀÎÀÌ °¡´ÉÇÏ¿´´Ù. ÀÌ¿¡ ºñÇØ ¼Ò½º·ù´Â ºñÁ¶»ç±¸¿¡¼­´Â $T_1$ ÀÌÇÏÀÇ °ªÀÌ ³ªÅ¸³µÁö¸¸, 5kGy ÀÌ»óÀÇ Á¶»ç±¸¿¡¼­ 1173, 1773ÀÇ $T_1$º¸´Ù ³ô°í $T_2$º¸´Ù ³·Àº photon count¸¦ ³ªÅ¸³»¾î Áß°£½Ã·á·Î ³ªÅ¸³µ´Ù. ¶ÇÇÑ ÀüºÐ·ù¿¡¼­´Â ºñÁ¶»ç±¸¿¡¼­ $T_1$º¸´Ù ³ô°í $T_2$º¸´Ù ³·Àº Áß°£°ªÀ» ³ªÅ¸³»¾î TL È®ÀÎ ½ÃÇèÀ» ÇÊ¿ä·Î ÇÏ¿´´Ù. TL ºÐ¼®¿¡¼­´Â 3°¡Áö Ç°¸ñ ¸ðµÎ ºñÁ¶»ç±¸¿¡¼­´Â $300^{\circ}C$ ºÎ±Ù¿¡¼­ ÃÖ°íÀÇ peak¸¦ °¡Áö´Â glow curve¸¦ ³ªÅ¸³»°Å³ª ƯÁ¤ÀûÀÎ TL glow curve¸¦ ³ªÅ¸³»Áö ¾Ê¾Ò´Ù. ±×¸®°í Á¶»ç±¸¿¡¼­´Â $150{\sim}250^{\circ}C$ ºÎ±Ù¿¡¼­ ºñÁ¶»ç±¸¿¡¼­ º¸ÀÌÁö ¾Ê¾Ò´ø ƯÀ¯ÀÇ glow curve¸¦ ³ªÅ¸³»¾ú°í, Á¶»ç¼±·®¿¡ µû¸¥ intensityÀÇ Â÷À̵µ º¸ÀÌ°í ÀÖ¾ú´Ù ÇÑÆí TL °á°ú¸¦ °ËÁõÇϱâ À§ÇÏ¿© ÀçÁ¶»ç¿¡ ÀÇÇÑ TL ratio¸¦ »êÃâÇÑ °á°ú ºñÁ¶»ç±¸¿¡¼­´Â 0.08 ÀÌÇϸ¦ ³ªÅ¸³»¾úÀ¸³ª, °¢ ¼±·®º° Á¶»ç±¸¿¡¼­´Â ÀüºÐ·ùÀÇ °æ¿ì 0.07 ÀÌ»óÀÇ ³·Àº °ªÀ» ³ªÅ¸³»±âµµ ÇÏ¿´À¸³ª TL¿Âµµ¹ü À§¿Í glow curveÀÇ ÇüÅ¿¡ µû¶ó¼­ ¹æ»ç¼± Á¶»çµÈ °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. µû¶ó¼­ PSL°ú TL ºÐ¼®¹ýÀÇ Àû¿ë °¡´É¼ºÀÌ È®ÀεǾú´Ù.

[±¹³»³í¹®]

ÇѾàÀçÀÇ ¹æ»ç¼± Á¶»ç¿©ºÎ¸¦ È®ÀÎÇϱâ À§ÇØ µµ¶óÁö¿Í ¿À°¡ÇÇ¿¡ $0{\sim}10\;kGy$ÀÇ °¨¸¶¼±À» Á¶»çÇÏ°í PSL, TL ¹× ERS Ư¼ºÀ» ºñ±³ °ËÅäÇÏ¿´´Ù. PSLÀ» ÃøÁ¤ÇÑ °á°ú ºñ Á¶»çµÈ ÇѾàÀç¿¡¼­ ÇÑ°èÄ¡($T_1$)ÀÎ 700º¸´Ù ³·Àº photon count °ªÀ» º¸À̸鼭 negative·Î ÆÇÁ¤µÇ¾ú°í, 0.15 kGy ÀÌ»ó Á¶»ç±¸´Â ÇÑ°èÄ¡($T_2$)ÀÎ 5,000º¸´Ù ³ôÀº photon count °ªÀ» ³ªÅ¸³»¸é¼­ positive·Î Ç¥½ÃµÇ¾î ¹æ»ç¼± Á¶»çµÈ °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. ¶ÇÇÑ ½Ã·á·ÎºÎÅÍ mineralÀ» ºÐ¸®ÇÏ¿© TLÀÇ glow curve¿Í TL ratio($TL_1/TL_2$)¸¦ È®ÀÎÇÏ¿´´Ù. ¹æ»ç¼± Á¶»ç°¡ µÇÁö ¾ÊÀº µµ¶óÁö¿Í ¿À°¡ÇÇ´Â TL ratio°¡ 0.007 ÀÌÇÏÀÇ °ªÀ» ³ªÅ¸³»¾úÀ¸¸ç, Á¶»ç±¸(1.0 kGy ÀÌ»ó)¿¡¼­´Â 0.314 ÀÌ»óÀÇ TL ratio¸¦ ³ªÅ¸³»¾ú´Ù. µµ¶óÁö¿Í ¿À°¡ÇÇ´Â º» ¿¬±¸¿¡¼­ ¼³Á¤ÇÑ TL ratioÀÇ ÇÑ°èÄ¡ 0.1º¸´Ù ³ôÀº ¼öÄ¡¸¦ ³ªÅ¸³»¾î ¹æ»ç¼± Á¶»ç¿©ºÎ È®ÀÎÀÌ °¡´ÉÇÏ¿´´Ù. ESR ÃøÁ¤À» ÅëÇÑ ¹æ»ç¼± Á¶»ç ÇѾàÀç °ËÁö¿¡¼­´Â cellulose ¶óµðÄ®¿¡¼­ À¯·¡µÈ ƯÀÌÇÑ ¶óµðÄ® ½ÅÈ£¸¦ º¸¿©ÁÖ¾ú°í, ÀÌ´Â µµ¶óÁö ½Ã·á¿¡¼­ ´õ¿í ¶Ñ·ÇÇÏ°Ô È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. ÀÌ»óÀÇ °á°ú¿¡¼­ PSL, TL ¹× ESR ºÐ¼®Àº µµ¶óÁö¿Í ¿À°¡ÇÇÀÇ ¹æ»ç¼± Á¶»ç ¿©ºÎ È®Àο¡ ÀûÇÕÇÑ ¹æ¹ýÀÓÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù

[ÇØ¿Ü³í¹®]

AbstractIn this paper, we introduce and discuss the TL-left (right, two-sided) ideal generated by an L-subset, T being an arbitrary infinitely ∨-distributive t-norm on a given complete Brouwerian lattice L.

[ÇØ¿Ü³í¹®]

AbstractAs a continuation of the study of divisible and pure fuzzy subgroups (see Sidky and Mishref, 1990), we introduce the concepts of divisible TL-subgroups and pure TL-subgroups of an additive group, where T is an arbitrary infinitely ∨-distributive t-norm on a given complete Brouwerian lattice L, and show some of their properties.

[ÇØ¿Ü³í¹®]

A thymus-leukemia (TL)-specific probe, pTL1, has been generated from a TL-coding gene of BALB/c mice. Multiple species of TL mRNA were detected in TL+ cells by Northern blot analysis with pTL1, and different Tla haplotypes could be distinguished on the basis of characteristic patterns of TL mRNA. No TL-related message was found in normal or leukemic TL- cells, including thymocytes from Tlab mice. However, TL mRNA could be detected in TL+ leukemias occurring in Tlab mice. A cDNA library has been made from ASL1 (a TL+ leukemia of A mice [Tlaa]), and pTL1+ clones have been sequenced. At least three structurally distinct TL genes are expressed in ASL1. Sequence comparison of TL genes from three Tla haplotypes indicates that TL genes are highly conserved (greater than 90% homology) and are more distantly related to H-2 genes. Several polyadenylation sites have been found in the 3' untranslated region of TL genes, and differential polyadenylation contributes to the size heterogeneity of TL transcripts. The predicted amino acid sequence of TL products indicates that TL and H-2 are similar in domain structure and disulfide bonds, but differ in glycosylation sites and in cytoplasmic domain sequences.

[ÇØ¿Ü³í¹®]

The beginning of the Lycian text TL 45 is restored with the usual topicalization of the direct object, but with the verb not appearing until line 3. The content of the sentence does not corre-spond to the first sentence of the Greek version. In this version, the title and the names of the archonts Hieron and Apollodotos, known from the contemporary trilingual Letöon inscrip-tion (N 320), are restored in lines 6-7. In lines 11-12 a Greek version of the Lycian theonym Trbbãmara may be restored. The Lycian text of TL 45B is revised and, as far as possible, re-stored, in comparison with N 320. The oath therein is not followed by a curse, but by a bless-ing, i. e., the rewards promised for keeping the oath. The formulation is reminiscent of a for-mulation in the Bisitun inscription of Darius I. At the end there would be room enough to restore the theonym Trbbãmara too.TL (Tituli Lyciae) 45’teki Likçe metnin başlang©¥c©¥, dolays©¥z tümlecin olağan bir şekilde başa geldiği fakat fiilin 3. sat©¥ra kadar görünmediği bir biçimde tamamlanm©¥şt©¥r. Cümlenin içeriği Yunanca k©¥s©¥mdaki ilk cümle ile uyuşmamaktad©¥r. Yunanca k©¥s©¥mda başl©¥k ve ayn©¥ döneme ait Letoon üç dilli yaz©¥t©¥ndan (N = Neumann = 320) bilinen arkhonlar Hieron ve Apollodotos’un isimleri 6.-7. sat©¥rlarda tamamlanm©¥şt©¥r. 11.-12. sat©¥rlar Likçe tanr©¥ ismi Trbbãmara’n©¥n Yu-nanca uyarlamas©¥ olarak tamamlanabilir. TL 45B’deki Likçe metin revize edilmiş ve N 320 ile karş©¥laşt©¥r©¥larak mümkün olduğunca tamamlanm©¥şt©¥r. Oradaki yemini bir lanetleme ile değil, lütufla, yani yemini koruma durumunda verilecek ödüllerle devam etmektedir. Bu formülas-yon I. Darius’un Bisitun yaz©¥t©¥ndaki formülasyonu an©¥msatmaktad©¥r. Ayr©¥ca sonda Trbbãma-ra tanr©¥ ismini tamamlayabilecek kadar yer bulunmaktad©¥r.

[±¹³»³í¹®]

Polycrystalline Tl-1223 superconductors with a chemical composition of (Tl, Pb, Bi)TEX>$ (Sr, Ba)

[ÇØ¿Ü³í¹®]

A high-performance liquid chromatography technique has been presented to measure the [201Tl]TlCl3 impurity in [201Tl]TlCl radiopharmaceutical for precise determination of radiochemical purity. Diethylene tetraamine pentaacetic acid (DTPA) has been used for complete complexation of [201Tl]Tl(III). [201Tl]Tl(III)-DTPA was analyzed in the presence of [201Tl]Tl(I) using a cation exchange HPLC column.

[ÇØ¿Ü³í¹®]

In [25, 27], we put forward a rudimentary frame of the theory of TL-subalgebras. In [26], we established a theory of TL-subgroups and Ω-TL-subgroups. In this paper, we will continue our work in concern with basic ideas provided in [25-27], introduce the notions of TL-subrings and TL-ideals of a ring, and study some of their properties, where T is an arbitrary infinitely @?-distributive t-norm on a given complete Brouwerian lattice L.

[ÇØ¿Ü³í¹®]

The phase diagram of the Ge-Tl-Te ternary system was established by differential thermal analysis, X-ray diffraction, and metallographic analysis.Four ternary incongruent compounds were confirmed: Tl2GeTe3, Tl8GeTe5, Tl2GeTe2 and Tl6Ge2Te6, which are formed by peritectic p-type reactions at 378 oC, 470 oC, 422 oC and 416 oC respectively. Two new ternary compounds were identified: Tl2GeTe5 which has a congruent melting point at 322 oC and TlGeTe3 which is formed by a peritectic P-type reaction at 330 oC.One binary section and five two-phase sections are described. Seventeen invariant points are characterized. One liquid-liquid miscibility ternary gap exists. A phase diagram is proposed.

[±¹³» ÇÐÀ§³í¹®]

º» ³í¹®¿¡¼­´Â UWB ½Ã½ºÅÛÀÇ ½ÅȣǰÁú Çâ»óÀ» À§ÇØ ¼ÒÇüÀÇ ÇÊÅÍ¿Í ÃÖÀû ¼³°è ±â¹ýÀÌ Á¦¾ÈµÇ¾ú´Ù. ÇÊÅÍ´Â CRLH-TL°ú ´Ù´ÜÀÓÇÇ´ø½º ±¸Á¶, µÎ °³ÀÇ ½ºÆÛ¶óÀÎÀ¸·Î ±¸¼ºµÈ´Ù. µ¶¸³ÀûÀÎ ´ÜÀÏ °ÝÀÚ±¸Á¶ÀÎ CRLH-TL ±¸Á¶´Â ½ÇÁúÀûÀ¸·Î ¥ë/4 ±æÀ̸¦ ¾²´Â ÀϹÝÀûÀÎ °øÁø±¸Á¶ º¸´Ù ¸Å¿ì ÀÛÀº Å©±â¸¦ °¡Áö¸ç, ±¤´ë¿ªÀÇ Åë°ú´ë¿ªÀ» °¡Áö´Â ÀåÁ¡À» °¡Áø´Ù. ÀÌ·¯ÇÑ CRLH-TL ±¸Á¶´Â ¼ÒÇüÀÇ ±¸Á¶·Î ±¸ÇöµÇ±â À§ÇØ ´Ü¶ô°³¹æ °£±Ø¸µ ±¸Á¶¿Í ÀÎÅ͵ðÁöƲ ¼±·Î·Î ±¸ÇöµÇ¾ú´Ù. UWBÀÇ °íÁ¶ÆÄ ´ë¿ª Â÷´ÜÀ» À§ÇØ ´Ù´ÜÀÓÇÇ´ø½º ±¸Á¶´Â CRLH-TL±¸Á¶¿Í ÇÊÅÍÀÇ Æ÷Æ®°£ÀÇ ¼±·ÎÀ§¿¡ ±¸ÇöµÇ¾ú´Ù. ±×¸®°í µÎ °³ÀÇ ½ºÆÛ¶óÀÎÀº ´ÜÀÏ °ÝÀÚ CRLH-TL °øÁø ±¸Á¶¸¦ µû¶ó Àü±âÀûÀÎ °áÇÕ¿¡ µû¶ó ±¸ºÎ·¯Áø ÇüÅ·Π¼³°èµÇ¾úÀ¸¸ç, ÀÌ´Â WLAN 5.15~5.825GHz) ´ë¿ªÀ» Â÷´ÜÇÒ ¼ö ÀÖ´Ù.
 ÇÊÅÍÀÇ ÃÖÀû ¼³°è´Â Á¦¾ÈµÈ ES¾Ë°í¸®ÁòÀ» ÅëÇؼ­ ÀÌ·ç¾îÁ³À¸¸ç, Á¦¾ÈµÈ ES¾Ë°í¸®ÁòÀº ÀúÀü·Â UWB½Ã½ºÅÛÀÇ ¼º´É ÀúÇÏ¿äÀÎÀÎ ¸®ÇÃÀ» Á¦°ÅÇÏ´Â °úÁ¤ÀÌ Ãß°¡µÇ¾î °³¼±µÇ¾ú´Ù. ¾Ë°í¸®ÁòÀº Åë°ú´ë¿ªÀÇ »ðÀÔ ¼Õ½ÇÀÇ ¸®ÇÃÀ» Á¶ÀýÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °¡Áö°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ES °úÁ¤ µ¿¾È CRLH-TL, ´Ù´ÜÀÓÇÇ´ø½º ±¸Á¶, ½ºÆÛ¶óÀÎÀÌ °áÇÕµÈ ÃʱⱸÁ¶´Â ´«¿¡ ¶ç°Ô ÃÖÀûÀÇ Çü»óÀ» µû¶ó º¯È­µÈ´Ù. ¸®Çà Á¦°Å¸¦ À§ÇØ °³¼±µÈ ES ÃÖÀûÈ­¸¦ ÅëÇØ ¼³°èµÈ ÃÖÀûÀÇ ÇÊÅÍ´Â ±¸Á¶ÀÇ 15 x 14mm2ÀÇ ¼ÒÇüÀÇ Å©±â¸¦ °¡Áö¸ç, 3.3¿¡¼­ 10.2GH¿¡¼­ 1dB ÀÌÇÏ, 2.7¿¡¼­ 10.8GHz±îÁö 3dBÀÌÇÏÀÇ ÆòźÇÑ »ðÀÔ¼Õ½ÇÀ» °¡Áö°í, ¿ì¼öÇÑ 10dB ¹Ý»ç¼Õ½Ç, 12¿¡¼­ 20GHzÀÎ °íÁ¶ÆÄ ´ë¿ª°ú 5.15¿¡¼­ 5.825GHzÀÎ WLAN ´ë¿ª¿¡¼­ 20dB ÀÌ»óÀÇ ³ôÀº Â÷´Ü´ë¿ª Ư¼ºÀ» °¡Áø´Ù. ÃÖÀû ¼³°èµÈ ÇÊÅÍ´Â ¿øÇÏÁö ¾Ê´Â ½ÅÈ£¸¦ Â÷´ÜÇÔ¿¡ µû¶ó ±âÁ¸ UWB ½Ã½ºÅÛÀÇ ½ÅȣǰÁú Çâ»ó¿¡ Å« ±â¿©¸¦ ÇÒ °ÍÀ̸ç, ¸®ÇÃÀ» Á¦°ÅÇϱâ À§ÇØ Á¦¾ÈµÈ ES ÃÖÀûÈ­ ¾Ë°í¸®ÁòÀº ÇÊÅÍ È¤Àº ÆòźÇÑ Æ¯¼ºÀ» ¾ò±â À§ÇÑ ¼ÒÀÚÀÇ ÃÖÀûÈ­¿¡ À¯¿ëÇÏ°Ô ¾²¿©Áú °ÍÀ¸·Î »ç·áµÈ´Ù.

[±¹³»³í¹®]

We introduce the notion of TL-p-subgroups that is an ex-tension of the notion of fuzzy p=subgroups and show that a torsion TL-subgroup of an Abelian group with T=${\bigwedge}$ can be written as the intersection of its minimal TL-p-subgroups.

[±¹³»³í¹®]

¹Ì»ý¹°Àû Ç°Áú°³¼±ÀÌ ¿ä±¸µÇ´Â º¹ÇÕÁ¶¹Ì½ÄÇ° 2Á¾(beef broth ºÐ¸», pork bone extract ºÐ¸»)À» ´ë»óÀ¸·Î $0\~10kGy$ÀÇ °¨¸¶¼±À» Á¶»çÇÏ°í ±¤ÀÚ±Ø ¹ß±¤(PSL), ÀüÀÚ½ºÇÉ°ø¸í(ESR) ¹× ¿­¹ß±¤(TL) ÃøÁ¤¿¡ ÀÇÇÑ Á¶»ç¿©ºÎ°ËÁö °¡´É¼ºÀ» ºÐ¼®ÇÏ¿´´Ù. Á¶»ç¼±·®¿¡ µû¸¥ PSL photon count¸¦ ÃøÁ¤ÇØ º» °á°ú, ºñÁ¶»ç beef broth¿Í pork bone ºÐ¸»Àº °¢°¢ 503.0°ú 429.5ÀÇ °ªÀ» º¸¿© ºñÁ¶»ç ½Ã·á¿¡¼­ ÃøÁ¤µÇ´Â 700ÀÌÇÏÀÇ °ªÀÌ È®ÀεǾú´Ù. ±×·¯³ª $1\~10kGy$ Á¶»ç½Ã·á¿¡¼­´Â ¸ðµÎ 5,000 ÀÌ»óÀÇ photon count°¡ ÃøÁ¤µÇ¾î ÀÌµé º¹ÇÕÁ¶¹Ì½ÄÇ°Àº PSL ºÐ¼®¿¡ ÀÇÇØ ¹æ»ç¼± Á¶»ç¿©ºÎ¸¦ ½Å¼ÓÇÏ°Ô screeningÇÒ ¼ö ÀÖ¾ú´Ù. ¶ÇÇÑ Á¶»ç½Ã·áÀÇ ESR ºÐ¼®¿¡¼­´Â beef broth¿Í Pork bone ºÐ¸»¿¡¼­ signalÀÇ g-value°¡ 2.0065¿Í 2.0067·Î °¢°¢ ÃøÁ¤µÇ¾ú°í, Á¶»ç¼±·®¿¡ µû¶ó ESR signal intensity°¡ Áõ°¡ÇÏ´Â °æÇâÀ¸·Î beef broth ºÐ¸» $R^2=0.9226$, pork bone extract ºÐ¸» $R^2=0.9280$ÀÇ »ó°üÀ» º¸¿´À¸³ª ¹æ»ç¼± À¯·¡ÀÇ signalÀº È®ÀεÇÁö ¾Ê¾Ò´Ù. TLºÐ¼® °á°ú beef brothºÐ¸»ÀÇ °æ¿ì¿¡¼­¸¸ $170^{\circ}C$ ºÎ±Ù¿¡¼­ ¹æ»ç¼± Á¶»ç À¯·¡ÀÇ glow curve°¡ ³ªÅ¸³µÀ¸¸ç, ÀçÁ¶»ç¿¡ ÀÇÇÑ TL ratio $(TL_1/TL_2)$´Â ºñÁ¶»ç±º 0.05ÀÌÇÏ, 1kGy ÀÌ»ó Á¶»ç±º 1.0 ÀÌ»óÀ¸·Î ¹æ»ç¼± Á¶»ç ¿©ºÎÀÇ °ËÁö°¡ °¡´ÉÇÏ¿´´Ù.

[ÇØ¿Ü³í¹®]

Angular dependencies of the EPR spectra detected via the magnetic circular dichroism of the optical absorption (MCDA-EPR) observed in the MCDA bands at 355, 411, 425, 442, 465, 536, and 815nm of γ- or X-irradiated CsI:Tl crystals have been investigated. The MCDA-EPR spectrum at B || [100] consists of two quartets of intense lines. The spectrum could be satisfactorily explained taking into account hyperfine (hf) interactions of unpaired electron with S=12 with three Tl nuclei I (205Tl, 203Tl)=12. Therefore we propose as a model a Tl-trimer centre. The hf interactions along a [100] direction with two equivalent Tl and one single Tl were observed. As a centre model we propose TlCs^++-Tli0-TlCs^++. The Tl hf interactions observed can be explained qualitatively in a ionic model for this trimer centre.

[ÇØ¿Ü³í¹®]

Whilst optically stimulated luminescence (OSL) is commonly more suitable for sediment dating because of faster signal resetting, thermoluminescence (TL) remains important for dating burnt material, e.g. in archaeological contexts, or for studying the luminescence properties of different materials. A lack of user-optimized analysis software for TL data has exacerbated the decline of TL dating in comparison to OSL. However, exciting developments in TL dating of flint and calcite indicate a rise in application of this underused method. R is a programming language and environment for statistical computing and graphics. It provides a wide variety of statistical and graphical techniques and is highly extendable. A package specifically designed for luminescence data analysis is available. However, it mainly includes functions for the analysis of OSL data. The TLdating package is a new R package specifically dedicated to TL dating. This package is designed to be fully compatible with the existing Luminescence package and is user-friendly. It includes functions for TL data pretreatment and palaeodose estimation using the MAAD and the SAR protocols. The functionality of the TLdating package is evaluated using heated flints from Taibeh, Jordan.

/ 2,532

Filters

º¸±âÇü½Ä

Á¤·Ä¼ø¼­

Æ÷¸Ë

¸®½ºÆ® ¼ö