NDSL 416,599 Link page¿¡¼­ [¿ø¹®º¸±â] ¹öÆ°À» Ŭ¸¯Çϼ¼¿ä.

[±¹³» ÇÐÀ§³í¹®]

±¹ ¹® ¿ä ¾à °íºÐÀÚ ÀüÇØÁú ¸·À» ÀÌ¿ëÇÑ ¼öÀüÇØ(PEMEC)´Â °íü °íºÐÀÚ ÀüÇØÁú(PEM)°ú Ã˸ÅÀÇ Á¢ÇÕü¸¦ ÀÌ¿ëÇÏ¿© ¼ø¼ö·Î ºÎÅÍ Àü±âºÐÇØ¿¡ ÀÇÇØ ¼ö¼Ò¸¦ Á¦Á¶ÇÏ´Â ÀåÄ¡ÀÌ´Ù. ÀÌ ÀåÄ¡´Â ±âÁ¸ÀÇ ¾ËÄ®¸® ¼öÀüÇغ¸´Ù È¿À²ÀÌ ³ô°í, °í¼øµµÀÇ ¼ö¼Ò¸¦ Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒÇüÈ­, °æÁ¦¼º ¹× ¾ÈÁ¤¼ºÀÌ ³ôÀº ģȯ°æ ½Ã½ºÅÛÀÌ´Ù. º» ¿¬±¸¿¡¼­´Â ºñÆòÇü ÇÔħ ȯ¿ø¹ý(nonequilibrium impregnation-reduction, nonequil. I-R method)À¸·Î Nafion 117°ú º» ¿¬±¸½Ç¿¡¼­ ÀÚü Á¦ÀÛÇÑ °øÀ¯°¡±³ CL-SPEEK/TPA30 ¸·À» ÀÌ¿ëÇÏ¿© ¼ö¼Ò±Ø(cathode)Ã˸Ŵ 5 mMÀÇ Pt(NH3)4Cl2 Pt ¾çÀÌ¿Â ½Ã¾àÀ» ÇÔħ½ÃŲ ÈÄ È¯¿øÁ¦ÀÇ ³óµµ¸¦ º¯È­½ÃÄÑ Pt À½Àü±ØÀ» Á¦Á¶ÇÏ¿´À¸¸ç, »ê¼Ò±Ø(anode)Ã˸ŷδ 5 mMÀÇ Pt(NH3)4Cl2 ½Ã¾àÀ» ħÅõ½ÃŲÈÄ RuCl3 Ru È­ÇÕ¹°À» ½Ã°£°ú ³óµµ¸¦ º¯È­½ÃÄÑ ÇÔħ ½ÃŲ ÈÄ NaBH4·Î ȯ¿øÇÏ¿© Pt-Ru ¾çÀü±ØÀ» Á¦Á¶ÇÏ¿´´Ù. MEAÀÇ ÇüÅÂÇÐÀû ºÐ¼® °á°ú, Pt À½Àü±Ø¿¡¼­ ¸· Ç¥¸é¿¡ Pt ÃþÀÌ °í¸£°Ô ºÐÆ÷µÇ¾úÀ¸¸ç ȯ¿øÁ¦ÀÇ ³óµµ°¡ Áõ°¡ÇÒ¼ö·Ï Pt ÃþÀÇ µÎ²²°¡ Áõ°¡ ÇÏ¿´´Ù. Pt-Ru ¾çÀü±ØÀº RuÀÇ ÇÔħ½Ã°£ÀÌ 40ºÐÀÏ ¶§ ºñÆòÇü ÇÔħȯ¿ø¹ýÀÇ Æ¯¼ºÀ» Àß ³ªÅ¸³»¾ú°í RuÀÇ ³óµµ°¡ Áõ°¡ÇÒ¼ö·Ï PtÀÇ ÇÔ·®Àº ÁÙ¾îµå´Â ¹Ý¸é RuÀÇ ÇÔ·®Àº Áõ°¡ÇÏ¿´´Ù. CV ¹× XRD ºÐ¼®À» ÅëÇØ Nafion 117¿¡ ÇÔħµÈ Pt À½Àü±ØÀ» ºÐ¼®ÇÑ °á°ú ȯ¿øÁ¦ÀÇ ³óµµ°¡ Áõ°¡ÇÒ¼ö·Ï ³ôÀº È°¼º¸éÀûÀ» º¸¿´À¸¸ç NaBH4ÀÇ ³óµµ°¡ 0.8 MÀÏ ¶§ Àü±âÈ­ÇÐÀû È°¼º¸éÀû(ESA) 22.48 m2/g ¹× ºñÇ¥¸éÀû(SSA) 21.85 m2/gÀ¸·Î ½Åºù¼ºÀ» °®´Â ³ôÀº È°¼º¸éÀûÀ» º¸¿´À¸¸ç, µ¿ÀÏÇÑ Á¶°Ç¿¡¼­ tunstophosphoric acid(TPA) 30 wt.%¸¦ ÷°¡ÇÏ¿© °øÀ¯°¡±³ ½ÃŲ CL-SPEEK/TPA30 ¸·¿¡¼­ ESA 23.46 m2/gÀ¸·Î Nafion 117º¸´Ù ÁÁÀº Ư¼ºÀ» ³ªÅ¸³»¾ú´Ù. Pt-Ru ¾çÀü±Ø¿¡¼­´Â RuÀÇ ³óµµ°¡ Áõ°¡ÇÒ¼ö·Ï ¼ö¼Ò ÈíÂø/Å»Âø ¿µ¿ª°ú »ê¼Òȯ¿øÀüÀ§ÀÇ °¨¼Ò¸¦ È®ÀÎÇÏ¿´À¸¸ç RuÀÇ ³óµµ°¡ 10 mMÀÏ ¶§ »ê¼Ò±Ø Ã˸ŷνá ÀûÇÕÇÔÀ» È®ÀÎÇÏ¿´´Ù. Pt-Ru ¾çÀü±Ø¿¡¼­´Â Pt¿Í RuÀÌ ÇձݵǾúÀ½À» È®ÀÎÇÏ¿´À¸¸ç RuÀÇ ³óµµ°¡ Áõ°¡ÇÒ¼ö·Ï Pt-Ru ÇÕ±ÝÃ˸ÅÀÇ ÀÔÀÚÅ©±â°¡ °¨¼ÒÇÏ¿´À¸¸ç ÀÌ¿¡ µû¶ó È°¼º¸éÀûÀº Áõ°¡ÇÏ¿© RuÀÇ ³óµµ°¡ 10 mMÀÏ ¶§ SSA 34.09 m2/g·Î ¿ì¼öÇÑ Æ¯¼ºÀ» ³ªÅ¸³»¾ú´Ù. ¼öÀüÇؽà Àü¾ÐÈ¿À²À» Æò°¡Çϱâ À§ÇØ Á¶Àü¾ÐÀ» ÃøÁ¤ÇÑ °á°ú RuÀÇ ³óµµ°¡ Áõ°¡ÇÒ¼ö·Ï Á¶Àü¾ÐÀÌ ³·¾Æ Á³À¸¸ç, Ã˸Š»ç¿ë·®À» °í·Á ÇÒ ¶§ RuCl3ÀÇ ³óµµ 10 mM ¹× Àü·ù¹Ðµµ 1 A/cm2¿¡¼­ Á¶Àü¾Ð 1.75 V, Àü¾ÐÈ¿À² 84.6 %·Î ¿ì¼öÇÑ Æ¯¼ºÀ» ³ªÅ¸³ÂÀ¸¸ç, CL-SPEEK/TPA30 ¸·¿¡ À§ÀÇ Á¶°ÇÀ» Àû¿ëÇÑ °á°ú Á¶Àü¾Ð 1.73 V, Àü¾ÐÈ¿À² 85.5 %·Î ¼öÀüÇØ ¼¿¿¡¼­ Nafion 117À» ´ëüÇÒ ¼ö ÀÖÀ½À» È®ÀÎÇÏ¿´´Ù.

[±¹³» ÇÐÀ§³í¹®]

Pt/C catalyst is now widely used for electrode of polymer electrolyte membrane fuel cell(PEMFC). Nano-sized Pt particles impregnated on conductive carbon supports provide larger catalytic surfaces and highly porous structures. However, its use is limited when carbons meet water vapor at high voltages in unitized regenerative fuel cell and reformed hydrogen fuel containing CO(Carbon monoxide) gas is used. Carbon corrodes and deteriorates performance of hydrogen generation from water vapor. Pt is poisoned by CO gas and lose its function as a catalyst of hydrogen oxidation. Therefore, in this study, new support materials of Pt catalyst have been investigated to overcome the weakness of carbon support. Titanium sub-oxides (Magneli phases) and La^(3+) substituted cerate have been suggested as a functional support. In chapter 1, firstly single cell operating conditions and cell constituents have been optimized for the following test. Cell temperature, pressure, gas flow rate and temperature of humidifier was set up as 80¡É, 2atm, 100sccm : 200sccm(H_(2):O_(2)) and 90¡É : 85¡É(H_(2):O_(2)). Nafion 115, 1035 membrane, Nafion ionomer and teflon coated carbon paper was selected for the cell constituents. Membrane/Electrode assembly was fabricated by hot pressing at 130¡É, 90atm, for 1 minutes. Composition of Nafion ionomer and Pt loadings in electrode was important for the improvement of cell performance which was correlated with the area of tri-phase active surfaces. The cell performance is known to be affected not only by composition of electrode but also by its structure. The structure of catalyst can be controlled by fabrication process and improved by cell activation procedure. Although many kinds of coating method have been applied to the fabrication process of catalytic layer such as hand brushing, screen printing, rolling and spraying, screen printing becomes one of the most popular methods due to its convenience and adaptability, However, there are two things to be focused on in the screen printing. The first is swelling problem of membrane. In the conventional screen printing, Nafion membrane must be temporally changed to Na^(+) form to avoid swelling trouble during the hot press decal transferring. Na^(+) formed Nafion membrane is stable at the temperature range from 150¡É to 160¡É during the hot pressing. Also in the previous direct screen printing, the slurry was also applied to membrane in Na^(+) form or tetra-butyl ammonium form to stabilize the catalytic layer. Anyhow both processes are still subject to being complicated yet. The second is organic solvent like glycerin which is essential for the coating property but assumed to deteriorate the activity in electrode. Usually organic solvent used for the screen printing is required to be highly viscous, so it can not be easily removed due to its elevating boiling temperature. Therefore, improved screen printing method which is rather simple without additive stabilization of catalytic layer steps but suppress the swelling trouble has been presented. And cell activation and its performance has been investigated by focusing on the glycerin. Two kinds of simplified screen printing methods have been suggested which are with or without gasket unified. The unified method revealed better performance especially at high current area due to blocking the gas leak during the operation which induce mass transport polarization. Anyhow both methods were competent to the previous methods in spite of eliminating the membrane treatment process to Na^(+) form. These methods provide simplified and faster fabrication chances. I-V and C-V characteristics indicated that glycerin tends to degrade activity of catalysts obstructing gas flow and ionic conduction and retards activation time linearly with increase of glycerin. However, minimum addition was necessary for the better coating of catalytic layer. Futhermore Pt loading can be controlled by varying glycerin addition. Optimized condition of glycerin for cell performance was 1:1 about 5% Nafion solution. From the TG and viscosity experiments, it could be conjectured that glycerin gradually escapes from the electrode during the cell activation rather than simply evaporates. Pt/C catalysts were made from two kinds of chemical method. Conventional sulfito complex route and direct reduction route were taken. Nano-sized Pt particles under 2nm could be impregnated on carbon support from direct reduction route, while some Pt clusters were impregnated from sulfito complex route. Speed of stirring precursors and dropping reduction agent were key processes for the impregnation of nano-sized Pt particles. Cell performances were measured using the Pt/C catalysts made from two kinds of catalysts and commercial one. Compared with commercial Pt/C(E-tek), cell performance was better due to larger surface area, although Pt composition in Pt/C made from direct reduction route was lower. In chapter 2, firstly titanium sub-oxides (Magneli phases) and La^(3+) substituted cerate were synthesized. Magneli phase are a sub-stoichiometric composition of titanium oxides as the general formula Ti_(n)O_(2n-1) (10¡Ãn¡Ã4) which have higher electrical conductivity but more resistive in corrosion. They are identifiable compounds and not simply doped titania or casual mixture of TiO_(x) (x£¼2). They were produced from high temperature over 1050¡É, reducing titania in a hydrogen atmosphere. La^(3+) substituted cerate are nonstoichiometric oxide with a lot of oxygen vacancies maintaing its fluorite structure. Due to a number of defects, oxygen in the surface or bulk can be evolved and stored more easily. Using the prepared metal oxide supports, Pt/Magneli phase, Pt/Mn-Magneli phase, Pt/CeO_(2), Pt/La_(x)Ce_(1-x)O_(2-x/2), (Pt/C, La_(0.3)Ce_(0.7)O_(1.85)) and Pt/(C,La_(0.3)Ce_(0.7)O_(1.85)) catalysts have been fabricated. The size of Pt particles impregnated on metal oxide supports was small enough to make surface area of Pt over 60§³/g. This value was about twice larger than that of Pt black, 31§³/g. Pt/Magneli phase, Pt/Mn-Magneli phase are applied to the electrode of URFC(Unitized Regenerative Fuel Cell) for hydrogen regeneration without separate fuel supplier and Pt/CeO_(2), Pt/La_(x)Ce_(1-x)O_(2-x/2), (Pt/C, La_(0.3)Ce_(0.7)O_(1.85)) and Pt/(C,La_(0.3)Ce_(0.7)O_(1.85)) are applied to the electrode of PEMFC for enhancing the resistance of CO poisoning. The conductivity of Magneli phase and Mn-doped Magneli phase are measured. The conductivity of Mn-doped Magneli phase was higher than undoped Magneli phase and increased with doping level to 3%. For the Magneli phase, the Conductivity of 'Ebonex' Composition Which composed of Ti_(4)O_(7), Ti_(5)O_(9), Ti_(6)O_(11), Ti_(7)O_(13), Ti_(8)O_(16) was the highest. The hydrogen regeneration performance of Pt/Maneli phase was higher than that of Pt black due to large Pt surfaces, despite Pt loading of Pt/Magneli phase was an half of Pt black. However, the enhancement was not so big because pore volume in Pt/Magneli phase was very low. The composition of Nafion ionomer was optimized differently for Pt black and Pt/Magneli phase. In Fuel cell mode, the cell performance of each catalysts was increased as the follow sequence; Pt/Mn(3%)-Ti_(4)O_(7) £¼ Pt black £¼ Pt/Ebonex £¼ Pt/Mn(3%)-Ebonex. In electrolyzer mode, the sequence was Pt/C £¼ Pt black £¼ Pt/Ebonex £¼ Pt/Mn(3%)-Ti_(4)O_(7) £¼ Pt/Mn(3%)-Ebonex. Cell performance could be improved when supports of Pt were applied and Manganese was doped in Magneli phase. On the other hand, La^(3+) can be substituted in Ce^(4+) site until 30% composition. Over 40% substitution, La_(2)O_(3) phase precipitated and pyrochloric cation ordering between La^(3+) and Ce^(4+) showed up. Catalytic activity about CO preferential oxidation was measured for Pt/CeO_(2), Pt/La_(x)Ce_(1-x)O_(2-x/2) (0.1£¼x£¼0.3) catalysts. When La_(0.3)Ce_(0.7)O_(1.85) are support are used, CO volume can be decreased to under 20ppm at 80¡É from the initial 8000ppm. More oxygen defects made the binding energy of oxygen weaker More oxygen evolved from the surface oxidated more CO adsorbates on Pt. Unfortunately, Pt/La_(0.3)Ce_(0.7)O_(1.85) can not be applied directly to the electrode of PEMFC because of poor conductivity and porousity. So it should be used as hybrid type with Pt/C catalyst like (Pt/C, La_(0.3)Ce_(0.7)O_(1.85)), Pt/(C, La_(0.3)Ce_(0.7)O_(1.85)). When mixture gas(0.8% CO-H_(2)) was used in PEMFC, Pt/(C,La_(0.3)Ce_(0.7)O_(1.85)) was more effective than (Pt/C,La_(0.3)Ce_(0.7)O_(1.85)) for removing CO poison on Pt while the function of Pt/C was stopped. Pt/(C,La_(0.3)Ce_(0.7)O_(1.85)) means the mixture support of carbon black and La_(0.3)Ce_(0.7)O_(1.85) on which Pt particles were impregnated. (Pt/C,La_(0.3)Ce_(0.7)O_(1.85)) means mixture of Pt/C and La_(0.3)Ce_(0.7)O_(1.85). In each case 0.1 mole percent of La_(0.3)Ce_(0.7)O_(1.85) versus Pt was applied.

[±¹³» ÇÐÀ§³í¹®]

¼ö¼Ò ¿¡³ÊÁö´Â È­¼®¿¬·á¸¦ ´ëüÇÒ ¿¡³ÊÁö¿øÀ¸·Î¼­ Å« °¢±¤À» ¹Þ°í ÀÖ´Ù. ¼ö¼Ò¸¦ »ý»êÇϱâ À§ÇÑ ¹æ¹ý Áß °íºÐÀÚ ÀüÇØÁú ¸·¿¡ Àü±Ø Ã˸Ÿ¦ ÀÔÇô ¹°ÀÇ Àü±âºÐÇعæ½ÄÀ¸·Î ¼ö¼Ò¸¦ »ý»êÇÔ¿¡ ÀÖ¾î º¸´Ù ÁÁÀº È¿À²À» º¸ÀÌ´Â Ã˸ÅÀÇ °³¹ß¿¡ °üÇÏ¿© ¿¬±¸¸¦ ÇÏ¿´´Ù. °íºÐÀÚ ÀüÇØÁú ¸·À¸·Î´Â Nafion 117¸·À» ÀÌ¿ëÇÏ¿© Pt(NH©ý)©þCl©ü¿Í Pd(NH©ý)©þCl©ü¸¦ Àü±¸Ã¼·Î ÇÏ¿© Àü±Ø Ã˸Ÿ¦ È­ÇÐÀû ȯ¿ø¹ýÀ» ÅëÇÏ¿© palladiumÀÇ ³óµµ¿Í ȯ¿øÁ¦(NaBH©þ)ÀÇ ¾çÀ» º¯È­½ÃÄÑ Pt/MEA/Pd MEA¿Í Pt/MEA/Pt-Pd MEA¸¦ Á¦Á¶ÇÏ¿´°í, °¢°¢À» SEM/EDX¸¦ ÅëÇÏ¿© ÇüÅÂÇÐÀû Ư¼ºÀ» ºÐ¼®ÇÏ°í Àü·ùÀü¾Ð°î¼±(cyclic-voltammetry, CV)À» ÅëÇÏ¿© Ã˸ÅÀÇ Àü±âÈ­ÇÐÀû È°¼º¸éÀû°ú ÀÔÀÚÅ©±â¸¦ ÃøÁ¤ÇÏ°í, XRD¸¦ ÅëÇÏ¿© ºñÇ¥¸éÀû(specific surface area, SSA), ±¸Á¶, °áÁ¤¼º, ÀÔÀÚÅ©±â µîÀ» È®ÀÎÇϸç, ¼öÀüÇØ ¼¿¿¡ Àû¿ëÇÏ¿© ¹°ÀÇ Àü±â ºÐÇØ ½ÃÀÇ Á¶Àü¾Ð Ư¼ºÀ» ÇÏ¿´´Ù. PalladiumÀü±Ø Ã˸Ŵ cathode¿¡ ÀÌ¿ëÇÏ¿´À» ¶§ Platinum°ú PalladiumÀ» È¥ÇÕÀ¸·Î »ç¿ëÇÑ °æ¿ìº¸´Ù ´õ ÁÁÀº ¼º´ÉÀ» ³ªÅ¸³Â´Ù. ¶ÇÇÑ È¯¿øÁ¦ÀÇ ¾çÀÌ ³Ê¹« ¸¹ÀÌ µé¾î°¡°Ô µÇ¾îµµ ÁÁÁö ¾ÊÀº ¼º´ÉÀ» ³ªÅ¸³»°Ô µÈ´Ù´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

[±¹³» ÇÐÀ§³í¹®]

The FRAM(Ferroelectric Random Access Memory) has already been recognized as the best-performing device used for multimedia products, for it has non-volatility, the fast read/write speed, and the compatibility with silicon process. However, it has been considered over the past few years that electrodes play a major role in determining the device properties and performance. In some cases, the effect of the electrode brings about modifications of the microstructure of the ferroelectric film. Moreover, the electrode directly controls the properties of ferroelectric capacitor. The ferroelectric layer must be annealed in oxygen atmosphere to form a ferroelectric crystallization after deposition. This directly limits the choice of electrodes, particularly those for the bottom electrodes. In this view, platinum (Pt) is one of the most promising candidates for the bottom electrodes of ferroelectric thin film. Nevertheless, the adhesion of platinum to substrates such as silicon-oxide (SiOx) is poor. Therefore, titanium (Ti) glue layer has typically been used. The Pt/Ti electrode stack deposited by the sputtering method tends to have a major instability problem, i.e., Pt hillock formation. Pt hillocks are a major concern because they can lead to short-circuit-failure of capacitor. It has been widely known that the hillock formation can release the compressive stress generated during both deposition and post-annealing. It is revealed by measuring stress-temperature curve that three factors are considered in the total stress generated during both deposition and post-annealing in Pt/Ti electrode stack: intrinsic stress, thermal stress and extrinsic stress. The height of Pt hillock is dependent on temperature and the thickness of Pt thin film by the analysis of high temperature XRD pattern and SEM image. Therefore, the main mass transport mechanism of pt hillock is expected to be grain boundary diffusion.(P chaudhari, 1969). The Pt thin film deposited by sputtering method has (111) preferred orientation but Pt hillock grains have (200) orientation. So TEM high resolution image confirm that Pt hillock termination plane is lowest surface energy (111) and growth plane is (200).

[±¹³»³í¹®]

By using angle resolved photoemission spectroscopy, we investigate the electronic structures of Pt-skin layer of Pt Co and Pt Ni alloys with CO molecules on the surface. Measured Fermi surface maps and band dispersions reflect the signatures of chemical bonding between Pt-skin layer and CO molecules. Furthermore, the degree of chemical bonding strength of CO molecules, estimated from the energy shift of the participating bands, is found to be reduced on both Pt bimetallic alloys. Our results show how the surface band structure of Pt bimetallic alloys is modified with molecular orbitals of CO molecules on the surface, revealing the important role of the electronic structure in the determination of chemical properties of bimetallic alloys.

[±¹³» ÇÐÀ§³í¹®]

Æú¸®¿Ã ¹æ¹ý¿¡ ÀÇÇØ ³ª³ëÅ©±âÀÇ Pt/C ¿ÍPt-Co/C Àü±ØÃ˸Ÿ¦ ÇÕ¼ºÇÏ¿´´Ù. ÀÌ´Â ¿¬·áÀüÁö Àû¿ë¿¡ ÀÖ¾î »ê¼Òȯ¿ø¹ÝÀÀÀÇ È°¼ºÀ» Çâ»ó½ÃÅ°±â À§ÇØ ¿¬±¸µÇ¾ú´Ù. XRD, TEM, EDS±×¸®°í ¼øȯÀüÀ§¹ýÀ¸·Î Á¦Á¶µÈ Ã˸ÅÀÇ Æ¯¼ºÀ» ºÐ¼®ÇÏ¿´´Ù. °¢ Ã˸ÅÀÇ »ê¼Òȯ¿ø¹ÝÀÀ¿¡ ´ëÇÑ È°¼º ½ÇÇèÀº Pt-Co/C Ã˸ÅÀÇ È°¼ºÀÌ Pt/C Ã˸ź¸´Ù ´õ Å­À» º¸¿©ÁÖ¾ú´Ù. Pt/C ¿Í Pt-Co/C Ã˸Ŵ ¼­·Î ´Ù¸¥ ÀüÇØÁú ¿Âµµ Áï, 25, 45, ±×¸®d°í 65¡É¿¡¼­ »ê¼Òȯ¿ø¹ÝÀÀÀÇ È°¼º¿¡ ´ëÇÑ ½ÇÇèÀ» ¼öÇàÇÑ °á°ú, ¿Âµµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó È°¼º ¶ÇÇÑ Áõ°¡µÊÀ» È®ÀÎÇÏ¿´´Ù. Pt-Co/C Àü±ØÃ˸ÅÀÇ ¾ÈÁ¤ÀûÀÎ È¿°ú´Â °¡¼ÓµÈ ¾ÈÁ¤¼º ½ÇÇè¿¡ ÀÇÇØ ºÐ¼®µÇ¾ú°í, ±× °á°ú Áö¼ÓÀûÀ¸·Î ÀüÀ§¸¦ °¡ÇØÁÙ ¶§ Pt-Co/C Àü±ØÃ˸ÅÀÇ È°¼ºÀÌ °¨¼ÒµÇ¾ú´Ù. ÀÌ´Â Co°¡ °­»ê¿¡ ÀÇÇØ ÀÌ¿ÂÈ­µÇ°í ÀüÇØÁú¼ÓÀ¸·Î ¿ëÇصǾú±â ¶§¹®À¸·Î »ý°¢µÈ´Ù. ºÒ¾ÈÁ¤ÇÑ Ã˸Ÿ¦ º¸È£Çϱâ À§ÇØ Pt-Co/CÃ˸ſ¡ Au¸¦ ÷°¡ÇÏ¿© Au/Pt-Co/CÃ˸Ÿ¦ Á¦Á¶ÇÏ¿´°í, ÀÌ Ã˸Ŵ »ê¼Òȯ¿ø¿¡ ´ëÇÑ È°¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ¾ú´Ù.

[±¹³»³í¹®]

Pt ³ª³ëÀÔÀÚÀÇ ÇÕ¼º°ú À̸¦ ÀÌ¿ëÇÑ hybrid Pt-$SiO_2$ ³ª³ëÀÔÀÚÀÇ ÇÕ¼ºÀ» ¼º°øÀûÀ¸·Î ¼öÇàÇÏ¿´À¸¸ç, self-assembled Pt nanoparticles monolayer¸¦ charge trapping layer·Î È°¿ëÇÏ´Â metal-oxide-semiconductor(MOS) type memoryÀÇ ÇÑ ¿¹·Î non-volatile memory(NVM)ÀÇ ÀÀ¿ëÀ» º¸ÀÓÀ¸·Î½á ³ª³ëÀÔÀÚÀÇ È°¿ë °¡´É¼ºÀ» º¸ÀÌ°í, ¶ÇÇÑ, hybrid Pt-$SiO_2$ ³ª³ëÀÔÀÚ ¹Ú¸· ÃþÀÇ Á¦¾î¸¦ ÅëÇÑ MOS type memory device¿¡ÀÇ º¸´Ù ´õ ³ÐÀº È°¿ë °¡´É¼ºÀ» º¸ÀÌ°íÀÚ ÇÏ¿´´Ù.

[±¹³»³í¹®]

The induced Pt magnetization in a Pt/Co/Pt thin film structure is studied. The normally nonmagnetic Pt acquires a magnetic moment due to the magnetic proximity effect at the Co Pt interfaces. Element specific Pt structural and magnetic properties are characterized by synchrotron-based resonant x-ray reflectivity and x-ray resonant magnetic reflectivity measurements. An advanced analysis method based on Bayesian inference is used for model fitting of the x-ray data. Using this method, we retrieve the best fit values of material parameters (e.g., thickness, interfacial roughness) from the data. Analysis of x-ray reflectivity data of this specific system shows that the Pt magnetization and Co Pt interfacial roughness is significantly different between the top and bottom Pt layers, with both values being larger in the top Pt. The successful application of this Bayesian method to study the magnetic and structural properties of a thin film system demonstrates its effectiveness for x-ray reflectivity data analysis.

[±¹³» ÇÐÀ§³í¹®]

±âÁ¸ÀÇ ¹ÝÀü±¸Á¶¸¦ °¡Áø ´ÙÃþ¹Ú¸·Àº [Pt 0.2 nm/Co 0.5 nm] ÀÇ ±¸Á¶¸¦ °¡Áö°í ÀÖ¾ú´Ù. ¿©±â¼­ 0.2 nm ÀÇ Pt ÃþÀº 1 mono layer ¶ó°í ¿©±â±â¿¡´Â ±× µÎ²²°¡ ÃæºÐÇÏÁö ¾Ê´Ù. Pt ÃþÀÌ Á¶±Ý ´õ µÎ²¨¿ö 1 mono layer °¡ µÈ´Ù¸é Co ¿Í Pt ÀÌ ÀÌ·ç´Â °è¸é»óÅ°¡ Á» ´õ ÁÁ¾ÆÁú °ÍÀÌ°í °è¸é¿¡¼­ À¯µµµÇ´Â ¼öÁ÷ÀÚ±âÀ̹漺ÀÇ Å©±âµµ Áõ°¡ÇÒ °ÍÀ̶ó´Â ¿¹ÃøÀÌ °¡´ÉÇÏ´Ù. À̸¦ È®ÀÎÇϱâ À§ÇØ Pt ÃþÀÇ µÎ²²¸¦ Á¶±Ý Áõ°¡½ÃŲ [Pt 0.25 nm/Co 0.5 nm] ÀÇ ¹ÝÀü±¸Á¶¸¦ °¡Áø ´ÙÃþ¹Ú¸·¿¡ ´ëÇÑ Æ¯¼ºÀ» »ìÆ캸¾Ò´Ù. ±× °á°ú ±âÁ¸ÀÇ ¹ÝÀü±¸Á¶¸¦ °¡Áø ´ÙÃþ¹Ú¸·ÀÌ °¡Áö´Â ¼öÁ÷ÀÚ±âÀ̹漺º¸´Ù ´õ °­ÇÑ ¼öÁ÷ÀÚ±âÀ̹漺À» ¾òÀ» ¼ö ÀÖ¾ú´Ù. ¶ÇÇÑ 500¡ÆC ÀÇ ÈÄ¼Ó ¿­Ã³¸® ÈÄ¿¡µµ °­ÇÑ ¼öÁ÷ÀÚ±âÀ̹漺À» À¯ÁöÇÏ´Â °ÍÀ» È®ÀÎÇÏ¿´´Ù. ÀÌ´Â Pt ÃþÀÇ µÎ²²¸¦ 0.25 nm·Î »ó½Â½ÃÄÑ 1 mono layer ¿¡ ´õ °¡±î¿î µÎ²²¸¦ »ç¿ëÇÑ °ÍÀÌ °è¸é»óŸ¦ ÁÁ°Ô ÇÏ¿© ¼öÁ÷ÀÚ±âÀ̹漺ÀÌ °­ÇØÁ³´Ù°í Çؼ®ÇÒ ¼ö ÀÖ´Ù. ´ÙÃþ¹Ú¸·¿¡¼­ ¼öÁ÷ÀÚ±âÀ̹漺ÀÇ Å©±â°¡ °è¸é»óÅ¿¡ ÀÇÇØ °áÁ¤µÈ´Ù¸é, Pt (bottom)/Co °è¸é°ú Co/Pt (top) °è¸éÀÇ ºñ±³ºÐ¼®À» ÅëÇØ °è¸é»óÅ¿¡ ´ëÇÑ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù. µÎ °è¸é¿¡ ´ëÇÑ ¿¬±¸´Â ÁÖ·Î [Pt/Co/Pt] »ïÃþ¹Ú¸·±¸Á¶¸¦ ¹ÙÅÁÀ¸·Î ÀÌ·ç¾îÁ³À¸¸ç, [Pt/Co/Pt] »ïÃþ¹Ú¸· ±¸Á¶ÀÇ ¼öÁ÷ÀÚ±âÀ̹漺À» ºÐ¼®ÇÏ¿© Pt (bottom)/Co °è¸é°ú Co/Pt (top) °è¸éÀÇ ºñ´ëĪ¼ºÀÌ ¹àÇôÁ³´Ù. ÇÏÁö¸¸ ¼öÁ÷ÀÚ±âÀ̹漺À» ºÐ¼®ÇÏ´Â ¹æ¹ýÀÌ ¾Æ´Ñ ´Ù¸¥ ¹æ¹ýÀ» ÅëÇؼ­µµ °è¸éÀÇ ºñ´ëĪ¼º¿¡ ´ëÇØ ºÐ¼®ÇÏ´Â °Íµµ °¡´ÉÇÒ °ÍÀÌ´Ù. À̹ø ¿¬±¸¿¡¼­ ±× °è¸é»óŸ¦ ºÐ¼®Çϱâ À§ÇØ »ç¿ëÇÑ Ã´µµ´Â ¹Ù·Î magnetic dead layer (MDL) ÀÌ´Ù. [Pt/Co/Pt] »ïÃþ¹Ú¸·¿¡¼­´Â ÁõÂø °úÁ¤ Áß »ó´Ü°è¸é¿¡¼­ ¹ß»ýÇÏ´Â Pt ¿øÀÚµéÀÇ Ä§Åõ (in-terpenetration) ·Î ÀÎÇØ MDL (magnetic dead layer) ÀÌ Çü¼ºµÉ °ÍÀÌ´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­´Â [Pt/Co/Pt] »ïÃþ¹Ú¸· ±¸Á¶¿¡¼­, »óºÎ Pt ÃþÀÇ µÎ²²¿Í Co ÃþÀÇ µÎ²², ±×¸®°í ¿­Ã³¸®¿¡ µû¸¥ MDL ÀÇ º¯È­¸¦ ÅëÇØ µÎ °è¸é»óÅÂÀÇ Â÷À̸¦ ¿¬±¸ÇÏ¿´´Ù. Ãß°¡ÀûÀ¸·Î Æ÷È­ÀÚÈ­ (saturation magnetization, Ms), ±ÙÁ¢È¿°ú (proximity effect) ¿Í °°Àº ´Ù¸¥ ÀÚ±âÀû ¼ºÁúÀÇ º¯È­¿¡ ´ëÇؼ­µµ ¿¬±¸ÇÏ¿´´Ù. CoÀÇ µÎ²²¿¡ µû¶ó ´Þ¶óÁö´Â Ms °ªÀ» ºÐ¼®ÇÑ °á°ú, Co ÃþÀÌ µÎ²¨¿ï ¶§´Â ÇØ´ç ¿µ¿ªÀÇ ¼ºÁúÀÌ ¹úÅ© (bulk) ¿Í À¯»çÇϸç, µÎ²²°¡ ¾ãÀ» ¶§´Â ¹úÅ©¿Í Å« Â÷À̸¦ º¸¿© ¹úÅ©°¡ ¾Æ´Ñ ÇÕ±Ý (alloy) °ú À¯»çÇß´Ù. ¶ÇÇÑ ¿­Ã³¸® Àü ÈÄÀÇ Ms °ª°ú ÀÚ±â¸ð¸àÆ® (m, magnetic moment) ÀÇ º¯È­¸¦ ÅëÇØ, ¿­Ã³¸® °úÁ¤ Áß¿¡ ¿ªÈ®»ê (back diffusion or uphill diffusion)ÀÌ ÀϾ ÁõÂø °úÁ¤¿¡¼­ Co ÃþÀ¸·Î ħÀÔÇß´ø Pt ¿øÀÚµéÀÌ Co ÃþÀÇ ¹ÛÀ¸·Î ºüÁ®³ª°¡´Â Çö»óÀÌ ¹ß»ýÇÔÀ» ¾Ë¾Ò´Ù. MDL Àº tPt ÀÇ º¯È­¿¡ µû¶ó Å©°Ô º¯ÇÒ °ÍÀ¸·Î ¿¹»óÇßÁö¸¸, ±× °á°ú´Â tPtÀÇ º¯È­¿¡ ¿µÇâÀ» ¹ÞÁö ¾Ê¾Ò´Ù. ÀÌ´Â ¾ãÀº Pt Ãþ (0.25 nm) À§¿¡ ½×ÀÌ´Â µÎ²¨¿î Ru Ãþ (3.0 nm) ÀÌ ÁõÂøµÇ¾î, Ru ÃþÀÇ Ä§ÀÔÀ¸·Î ÀÎÇØ MDLÀÇ Å©±â´Â »óºÎ Pt ÃþÀÇ µÎ²²¿¡ ÀÇÁ¸ÇÏÁö ¾Ê´Â °ÍÀ¸·Î º¸ÀδÙ. Ãß°¡ÀûÀ¸·Î CoÀÇ µÎ²²°¡ ¾ãÀº »ùÇõ鿡¼­´Â ±ÙÁ¢È¿°ú (proximity effect) ¿¡ ÀÇÇÑ ÀÚ±â¸ð¸àÆ®ÀÇ Áõ°¡µµ È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

[±¹³»³í¹®]

- The (SrCa)TiO3(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/SiO2/Si) using RF sputtering method at various deposition temperature. The dielectric constant of SCT thin films were increased with the increase of deposition temperature, and changed almost linearly in temperature ranges of -80¢¦£«90[¡É]. Also, SCT thin films was observed the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency was observed above 200[kHz]. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of 25¢¦100[¡É] can be divided into three characteristic regions with different mechanism by the increasing current. The region 1 below 0.8[MV/cm] shows the ohmic conduction. The region 2 can be explained by the Child's law, and the region 3 is dominated by the tunneling effect.

[±¹³» ȸÀÇÀÚ·á]

The SBN thin films are deposited on Pt-coated electrode(Pt/Ti/$SiO_2$/Si) using RF sputtering method at various deposition conditions. The capacitance of SBN thin films were increased with the increase of Ar/$O_2$ ratio and RF power, respectively. Also, The capacitance of SBN thin films were increased with the increase of deposition temperature.

[±¹³»³í¹®]

The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

[±¹³» ÇÐÀ§³í¹®]

Toluene is a volatile organic compound (VOC) that causes serious damage to human health, as well as environmental problems. In this study, we synthesized Pt/Al©üO©ý catalysts for toluene removal. The Pt loading was 1 wt.%, and the Pt nanoparticles were prepared by the optimized modified polyol method. In addition, oxides of Ce or Mn were used as cocatalysts to improve the catalytic activity. The Ce was impregnated into commercial Al©üO©ý, which has a high specific surface area, whereas MnO©ü-Al©üO©ý was synthesized by coprecipitation using Al and Mn precursors. The removal of toluene was carried out in a Pyrex tube reactor with a continuous feed of 100 ppm toluene balanced with dry air, corresponding to a gas hourly space velocity of 60,000 mL/(g h).

[±¹³»³í¹®]

º» ¿¬±¸¿¡¼­´Â Pt/SrBi$_2$Ta$_2$O$_{9}$(SBT)/Si (MFS)¿Í Pt/SBT/Pt (MFM) °¢°¢ÀÇ ±¸Á¶¿¡¼­ ¼ö¼Ò ¿­Ã³¸®¿¡ ÀÇÇÑ SBT¹Ú¸·ÀÇ ¹°¸®, Àü±âÀû ¿µÇâ¿¡ ´ëÇØ ¿¬±¸ÇÏ¿´´Ù. SBT ¹Ú¸·ÀÇ ¹Ì¼¼±¸Á¶ ¹× Àü±âÀû Ư¼ºÀº ¼ö¼Ò ¿­Ã³¸® ÈÄ¿¡ SBT ¹Ú¸·ÀÇ ¼Õ»óÀ¸·Î ¿­È­µÈ´Ù. ƯÈ÷, Pt Àü±Ø¿¡ ÀÇÇÑ SBT ¹Ú¸·ÀÇ ¿­È­ Çö»óÀ» ¿¬±¸Çϱâ À§ÇØ °¢°¢ Si ¿Í Pt À§¿¡ SBT ¸¦ ÁõÂøÇÏ¿© °°Àº Á¶°ÇÀ¸·Î ¿­Ã³¸®¸¦ ÇÏ¿´´Ù. XRD, XPS, P-V, C-V ÃøÁ¤À» ÅëÇØ Pt Àü±Ø ¾øÀÌ SBTÀÚü·Îµµ ¼ö¼Ò ¿­Ã³¸® ÈÄ¿¡ ¿­È­ µÊÀ» È®ÀÎ ÇÒ ¼ö ÀÖ¾ú´Ù. ¶ÇÇÑ, ¼ö¼Ò ¿­È­Çö»óÀ̶ó°í ÇÏ´Â Ã˸Š¹ÝÀÀÀ¸·Î SBT ¿­È­ Çö»óÀÌ Pt·Î °¡¼ÓÈ­µÇ¾ú´Ù. ÀÌ·¯ÇÑ Çö»óÀ» ¹æÁöÇϱâ À§Çؼ­ »õ·Î¿î Ir Àü±ØÀ» Á¦¾ÈÇÏ¿© $Ir/IrO_2/SBT/IrO_2$ ±¸Á¶¿¡¼­ÀÇ ¼ö¼Ò ¿­Ã³¸® ÀüÈÄ ¹× ȸº¹ ¿­Ã³¸®¸¦ ÅëÇØ SBT ¹Ú¸·ÀÇ Àü±âÀû Ư¼ºÀ» ¿¬±¸ÇÏ¿´´Ù. P-VÃøÁ¤À» ÅëÇØ SBT¹Ú¸·À» ÀÌ¿ëÇÑ MFM±¸Á¶¿¡¼­ IrÀÌ ¿­È­ ¹æÁö¿ë Àü±Ø ¹°Áú·ÎÀÇ È°¿ë °¡´É¼ºÀ» È®ÀÎÇÏ¿´´Ù.

[±¹³»³í¹®]

Reducing the cost of state-of-the-art Pt electrocatalysts while maintaining their oxygen reductionperformance is always a hotspot in fuel cell research owing to their significant economic benefit for thecommercialization of polymer electrolyte membrane fuel cells. Herein, we report a simple and costeffectivesynthesis of Pt Pd catalysts and a systematic study of their characteristics and catalyticperformances for the oxygen reduction reaction (ORR). Pt Pd bimetallic catalysts were prepared by asimple chemical deposition of Pt on the surface of Pd particles using a commercial Pd/C catalyst. Duringthe synthesis, Pt precursor was reduced, and Pt layers were preferentially overgrown on the surface ofthe preexisting Pd particles resulting in Pd@Pt core shell particles, which are favorable for ORR. Byvarying Pt precursors and the amount of Pt deposited, the physicochemical and electrochemicalproperties of the Pt Pd catalysts were optimized. The formation of a thin Pt layer on Pd surface is morefavorable, when using Pt(NH3)4Cl2 xH2O rather than H2PtCl6 xH2O. As the amount of Pt increased from0 to 10%, the surface properties of metal particles changed to similar to that of Pt, and the resultingcatalysts mainly consist of a Pt-rich layer with a Pd core such as the Pd@Pt core shell configuration.Pt(10%)Pd/C catalyst prepared by using Pt(NH3)4Cl2 xH2O exhibited a significant improvement in theORR with the mass activities of 221 and 53 mA/mgPGM at 0.85 and 0.9 V, respectively, which are beatablevalues compared to those (219 and 59 mA/mgPt at 0.85 and 0.9 V) of commercial Pt/C catalysts. Theperformance improvement of our bimetallic Pt Pd/C catalysts mainly originate from the formation of anactive Pt surface on the Pd core. In addition, considering that Pd is generally less expensive than Pt, thesecatalysts should have much better ORR performance and more feasibility of decreasing the total cost offuel cells. In this study, the characteristics, electrochemical behaviors, and ORR performanceimprovements of the simply prepared Pt(x) Pd/C core shell catalysts were systemically investigatedand are discussed.

[ÇØ¿Ü³í¹®]

We investigated the magnetization process of Co/Pt/Gd/Pt multilayers in order to study the indirect exchange coupling between Co and Gd through Pt. Normal spin-flop behavior was observed for samples with a Pt layer thickness tpt< 10Å and, on the other hand, a novel hysteresis loop with ‘negative coercivity’ was observed for tpt>10Å. This loop is considered to be due to the combined effect of the antiferromagnetic coupling between the Co and Gd layers and the large magnetic anisotropy acting on the Co layer magnetization. The calculated magnetization curves agree well with experimental results. The antiferromagnetic coupling strength estimated from a comparison of the calculation and the experiment decays oscillatingly with increasing tpt.

[±¹³» ÇÐÀ§³í¹®]

Pt/HZSM-5 ÃË¸Å¿Í Pt/SiO_(2) - HZSM-5 È¥¼ºÃ˸Ÿ¦ ÀÌ¿ëÇÏ¿© n-ÆæźÀÇ À̼ºÁúÈ­ ¹ÝÀÀÀ» ¼öÇàÇÏ¿´´Ù. Pt/HZSM-5¿Í Pt/SiO_(2)¸¦ Pt ÇÔ·®ÀÌ °¢°¢ 0.5wt%, 2.5wt%°¡ µÇµµ·Ï ÇÔħ¹ýÀ¸·Î Á¦Á¶ÇÏ¿´À¸¸ç, È¥¼º Ã˸Ŵ Pt/SiO_(2)¿¡ HZSM-5¸¦ 1:4ÀÇ ºñÀ²·Î ¼¯¾î Á¦Á¶ÇÏ¿´´Ù. Pt/HZSM-5¿Í È¥¼ºÃ˸Ż󿡼­ °¢°¢ ¹ÝÀÀ¿Âµµ ¹× H_(2)/H.C. ºñµîÀÌ ¹ÝÀÀ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ½ÇÇèÇÏ¿´´Ù. °ø°£½Ã°£ 9g-cat.hr/g-mole, H_(2)/H.C. = 10ÀÌ°í ¹ÝÀÀ¿Âµµ¸¦ º¯È­½ÃŲ °æ¿ì µÎ Ã˸Š¸ðµÎ 250 - 300¡É¿¡¼­ iso-ÆæźÀ¸·ÎÀÇ ¼±Åõµ°¡ °¡Àå ³ô°Ô ³ªÅ¸³µÀ¸¸ç ÀüÈ­À²Àº ¿Âµµ Áõ°¡¿¡ µû¶ó °è¼Ó Áõ°¡ÇÏ¿´´Ù. °ø°£½Ã°£ 9g-cat.hr/g-mole, ¹ÝÀÀ¿Âµµ 300¡É, feed ratio 5¿¡¼­ 20ÀÇ ¹üÀ§¿¡¼­ feed ratio°¡ Ŭ¼ö·Ï µÎ Ã˸Š¸ðµÎ È°¼ºÀÌ °¨¼ÒÇÏ´Â °æÇâÀ» º¸¿´´Ù. È¥¼º Ã˸Ŵ Pt/HZSM-5¿Í ºñ½ÁÇÑ ¼±Åõµ¸¦ º¸¿´À¸¸ç ÀüÈ­À²Àº Pt/HZSM-5ÀÇ °æ¿ì°¡ ´õ ³ô°Ô ³ªÅ¸³µ´Ù.

[±¹³» ÇÐÀ§³í¹®]

º» ½ÇÇè¿¡¼­´Â ÀÏÇÔ¼ö°¡ ºñ±³Àû ³ôÀº PtÀ» P-GaN¿¡ Á¢ÇÕÇϱâ À§ÇÏ¿© ¾ãÀº NiÀ» Áß°£ÃþÀ¸·Î »ç¿ëÇÏ°í ±× ¿À¹ÍƯ¼ºÀ» °üÂûÇÏ¿´´Ù. ¿ì¼± UV lithography¸¦ ÀÌ¿ëÇÏ¿© CTLM(circular transmission line method)ÆÐÅÏÀ» Á¦ÀÛÇϱâ À§ÇÏ¿© °¢Á¾ Á¶°Ç ÇÏ¿¡¼­ÀÇ ÆÐÅÏÀÇ ¸ð¾çÀ» °üÂûÇÔÀ¸·Î½á Á¦ÀÏ ÁÁÀº ÆÐÅÏÀÌ µÇ´Â resist µÎ²², ¿­Ã³¸® ¿Âµµ, UV ³ë±¤½Ã°£, Çö»ó½Ã°£À» ¾Ë¾Æ³»¾ú´Ù. ÀÌ·¯ÇÑ °øÁ¤¿¡ À̾ p-type GaN À§¿¡ °¢°¢ Ni(50¡Ê), Pt(500¡Ê)ÀÇ ¼ø¼­·Î Â÷·Ê·Î ÁõÂø½ÃÄÑ »ó¿Â¿¡¼­ºÎÅÍ 900¡É±îÁö 100¡ÉÀÇ °£°ÝÀ¸·Î ¿­Ã³¸®ÇÏ¿´´Ù. ±× °á°ú, 800¡É¿¡¼­ ¿­Ã³¸®ÇÑ °æ¿ì¿¡¼­¸¸ 2.51¡¿10^-2¥Ø§²ÀÇ Á¢ÃË ºñÀúÇ×(¥ñ_c)À» ¾òÀ» ¼ö ÀÖ¾ú´Ù. ÀÌ´Â Ni°ú PtÀ» Â÷·Ê·Î ÁõÂø½ÃÅ´À¸·Î½á ¿À¹ÍÁ¢ÇÕÀ» ¾òÀ» ¼ö ÀÖÀ» °ÍÀ̶ó´Â AES ½ÇÇèÀ» ±Ù°Å·Î ÇÑ Ãß·ÐÀÌ ¸Â´Ù´Â °ÍÀ» ¹àÈ÷´Â °á°úÀÌ´Ù. ÀÌ·¯ÇÑ ¿À¹ÍÁ¢ÇÕÀÇ Áß¿äÇÑ ¿øÀÎÀº Ni°ú PtÃþÀÌ ¿­Ã³¸®°úÁ¤¿¡¼­ Ni Áß°£ÃþÀÌ GaN¿Í ¹ÝÀÀÇϸ鼭 Ni nitride »óÀº Çü¼ºÇÏÁö ¾ÊÀº ä Ni°ú gallium°ú nitrogenÀÇ ¼¼ °³ÀÇ ¿ø¼ÒµéÀÌ ÆòźÇÑ ÃþÀ» Çü¼ºÇÏ¿© Pt ÃþÀÌ ÀÛÀº cluster·Î º¯È­ÇÏ´Â morphologyÀÇ º¯È­¸¦ ¸·¾ÆÁÜÀ¸·Î½á, nitrogenÀÌ °è¸éÀ¸·ÎºÎÅÍ ºüÁ®³ª°¡´Â °ÍÀ» ¸·´Â, nitrogen¿¡ ´ëÇÑ diffusion barrierÀÇ ¿ªÇÒÀ» ÇÏ°í ÀÖÀ½À» ½Ã»çÇÏ°í ÀÖ´Ù. º» ½ÇÇèÀ» ÅëÇÏ¿© p-type GaNÀÇ ¿À¹ÍÁ¢ÇÕÀÇ ÁÖ¿ä Á¶°Ç Áß Çϳª´Â nitrogenÀÇ depletionÀ» ¸·¾ÆÁÖ±â À§ÇÏ¿© ¹Ú¸·ÀÌ ÆòÆòÇÏ°Ô À¯ÁöµÇ¾î¾ß Çϸç, ƯÈ÷ Pt°ú °°ÀÌ clusteringÀÌ Àß µÇ´Â ±Ý¼ÓÁ¢ÇÕÀ» À§Çؼ­´Â °è¸é¿¡¼­ÀÇ stress¸¦ À̿ϽÃų ¼ö ÀÖ´Â ´Ù¸¥ ±Ý¼ÓÀ¸·Î ÀÌ·ç¾îÁø Áß°£ÃþÀÌ ¹Ýµå½Ã ÇÊ¿äÇÑ °ÍÀ» È®ÀÎÇÏ¿´´Ù.

[±¹³»³í¹®]

We report studies of resistance switching characteristics ofPt/FeO$_{x}$/Pt structures, of which FeO$_{x}$ thin films wereformed by thermal oxidation of Fe layers. X-ray diffraction (XRD)studies showed that less oxidized Fe$_{3}$O$_{4}$ phasedisappeared and $\alpha$-Fe$_{2}$O$_{3}$ phase was formed atannealing temperatures $\geq$400 $^\circ$C. The electroformingprocess, usually occurring at 7 $\sim$ 10 V, increased theconductivity of the structure significantly($>$10$^{2}$) andbrought about reversible resistance switching under unipolar biasvoltage. We successfully demonstrated that the FeO$_{x}$ filmsexhibited reliable memory switching behaviors.

[±¹³» ȸÀÇÀÚ·á]

The $(Sr_{1-x}Ca_x)TiO_3$(ST) thin films are deposited on Pt-coated electrode(Pt/TiN/$SiO_2$/Si) using RF sputtering method with substitutional contents of Ca. The maximum grain of thin films is obtained by substitution of Ca at 15[mol%]. Also, the composition of ST thin films were closed to stoichiometry(1.081~1.117 in A/B ratio). The dielectric constant changes almost linearly in temperature ranges of -80~+90[$^{\circ}C$]. The current-voltage characteristics of ST15 thin films showed the increasing leakage current as the measuring temperature increases.

[±¹³» ÇÐÀ§³í¹®]

H/ZSM5¿¡ $FeCl_3$¸¦ ½ÂÈ­½ÃÅ°´Â ¹æ¹ýÀ¸·Î Fe/Al ºñÀ²ÀÌ 1ÀÎ Fe/ZSM5 Ã˸Ÿ¦ Á¦Á¶ÇÏ¿´´Ù. Á¦Á¶µÈ Fe/ZSM5 Ã˸Ŵ $NO_x$¸¦ $N_2$·Î º¯È¯½ÃÅ°´Â ¼±ÅÃÀû ȯ¿ø ¹ÝÀÀ¿¡¼­ ³ôÀº È°¼ºÀ» º¸¿´´Ù. Á¦Á¶µÈ Ã˸ſ¡ ´ëÇØ $SO_2$¿¡ ´ëÇÑ ³»±¸¼º ½ÇÇèÀÌ ¼öÇàµÇ¾îÁ³´Ù. 150ppmÀÇ $SO_2$°¡ ¹ÝÀÀ ±âü¿¡ ÷°¡µÇ¾îÁ³À» ¶§, ÃÖ°íÀÇ È°¼ºÀ» ³ªÅ¸³»´Â $350^ circ C$¿¡¼­ Fe/ZSM5 »ó¿¡¼­ NOÀÇ $N_2$·ÎÀÇ ÀüȯÀ²Àº 56.0%¿¡¼­ 34.6%·Î ³·¾ÆÁ³À¸¸ç $SO_2$°¡ ¹ÝÀÀ ±âü »ó¿¡¼­ Á¦°ÅµÈ °æ¿ì¿¡´Â ÀüȯÀ²ÀÌ 48.4%·Î ³ô¾ÆÁ³´Ù. $SO_2$¸¦ ÷°¡ÇÏ°í Á¦°ÅÇÏ´Â ¹ÝÀÀ ½ÇÇè¿¡¼­ $N_2$¿Í COÀÇ ¼öÀ²Àº ºñ½ÁÇÑ °æÇâÀ» º¸¿´Áö¸¸ $NO_2$ÀÇ ¼öÀ²Àº $N_2$¿Í ¹Ý´ëµÇ´Â °æÇâÀ» ³ªÅ¸³»¾ú´Ù. Fe/ZSM5 »ó¿¡¼­ ¼±ÅÃÀû ȯ¿ø ¹ÝÀÀ¿¡¼­ÀÇ $SO_2$ÀÇ ¿µÇâÀ» Á» ´õ ÀÚ¼¼È÷ ¾Ë¾Æº¸±â À§Çؼ­ ESR, TPD ¹× FT-IR ½ÇÇèÀÌ ¼öÇàµÇ¾îÁ³´Ù. ESR ½ÇÇè¿¡¼­´Â distorted tetrahedral coordinationÀ¸·Î º¸°íµÇ¾îÁø $g approx 5.8$¿Í $g approx 6.5$ÀÇ peak°¡ ¼±ÅÃÀû ȯ¿ø ¹ÝÀÀ¿¡¼­ È°¼ºÁ¡À¸·Î º¸¿©Áø´Ù. $SO_2$°¡ Á¸ÀçÇÏ´Â ¼±ÅÃÀû ȯ¿ø ¹ÝÀÀ¿¡¼­ ÀÌ µÎ peak°¡ ¿ÏÀüÈ÷ »ç¶óÁ® ¹ö¸®´Â °ÍÀ» °üÂûÇÏ¿´´Ù. FT-IR ½ÇÇè¿¡¼­´Â IR band $1623 cm^{-1}$¿Í $1573 cm^{-1}$¿¡ ³ªÅ¸³ª´Â $Fe^{3+}$ »ó¿¡¼­ÀÇ nitro¿Í nitrate groupÀÌ ¹ÝÀÀ Áß°£Ã¼·Î º¸¿©Á³´Ù. $SO_2$°¡ Á¸ÀçÇÏ´Â ¼±ÅÃÀû ȯ¿ø ¹ÝÀÀ¿¡¼­ ÀÌ µÎ peak´Â ¿ÏÀüÈ÷ »ç¶óÁ³´Ù. $230^ circ C$¿¡¼­ $PtCl_2$°¡ CO ±âü»ó¿¡¼­ $Pt(CO)_2Cl_2$¸¦ Çü¼ºÇÏ°í ÀÌ°ÍÀÌ ½ÂÈ­µÈ´Ù´Â °Í¿¡ Âø¾ÈÇÏ¿© H/ZSM5¿¡ 9.85wt%¿Í 0.34wt%ÀÇ Pt°¡ ÀÌ¿Â ±³È¯µÈ Pt/ZSM5¸¦ Á¦Á¶ÇÏ¿´´Ù. Á¦Á¶µÈ Ã˸Ŵ platinum metal·Î º¸°íµÇ¾îÁø $2 theta = 39.6^ circ$¿Í $45.9^ circ$ÀÇ XRD peak¸¦ ³ªÅ¸³»¾úÀ¸¸ç platinum oxide peak´Â ³ªÅ¸³ªÁö ¾Ê¾Ò´Ù. ÀÌ·¯ÇÑ °á°ú·Î º¼ ¶§, ½ÂÈ­¹ýÀ¸·Î Ã˸Ű¡ Á¦Á¶µÇ¾îÁö´Â °úÁ¤¿¡¼­ $Pt^{2+}$Àº metallic platinumÀ¸·Î ȯ¿øµÇ¸ç À̰͵éÀº ºÒ¾ÈÇÑ »óÅÂÀ̹ǷΠ´õ¿í Å« ÀÔÀÚ¸¦ ¸¸µé±â À§Çؼ­ ¹¶ÃÄÁö´Â °ÍÀ¸·Î »ý°¢µÇ¾îÁø´Ù. Á¦Á¶µÈ Ã˸ÅÀÇ ÀÔÀÚ Å©±â¸¦ $H_2$ È­ÇÐÈíÂø¹ý°úTEMÀ¸·Î ÃøÁ¤ÇØ º» °á°ú Pt ÀÔÀÚÀÇ Å©±â´Â Á¦¿Ã¶óÀÌÆ®ÀÇ ±â°ø Å©±âº¸´Ù Å©´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. ±×·¯¹Ç·Î Pt ÀÔÀÚ´Â Á¦¿Ã¶óÀÌÆ®ÀÇ ¹Ù±ù Ç¥¸é¿¡¸¸ Á¸ÀçÇÑ´Ù°í »ý°¢µÇ¾îÁø´Ù. Á¦Á¶µÈ Pt/ZSM5´Â $NO_x$¸¦ $N_2$·Î º¯È¯½ÃÅ°´Â ¼±ÅÃÀû ȯ¿ø ¹ÝÀÀ¿¡¼­ ³ôÀº È°¼ºÀ» º¸¿´´Ù. Pt/ZSM-5-9.85 (9.85wt%ÀÇ Pt°¡ ÀÌ¿Â ±³È¯µÈ Pt/ZSM5)´Â µÎ °¡Áö Á¾·ùÀÇ È°¼ºÁ¡À» °¡Á³´Ù. ±× Áß Çϳª´Â $250^ circ C$¿¡¼­ ÃÖ°í È°¼ºÀÌ ³ªÅ¸³µÀ¸¸ç Àüó¸® Á¶°Ç°ú ȯ¿øÁ¦ÀÇ ¿µÇâÀ» ¹ÞÁö ¾Ê¾ÒÀ¸¸ç $H_2O$³ª $SO_2$ ȤÀº $H_2O$¿Í $SO_2$°¡ µ¿½Ã¿¡ ÷°¡µÈ °æ¿ì¿¡µµ ³ôÀº ³»±¸¼ºÀ» º¸¿´´Ù. ¹Ý¸é¿¡ ´Ù¸¥ È°¼ºÁ¡Àº $300^ circ C$ À̻󿡼­ ÃÖ°í È°¼ºÀ» ³ªÅ¸³»¾úÀ¸¸ç Àüó¸® Á¶°Ç°ú ȯ¿øÁ¦¿¡ µû¶ó È°¼ºÀÌ ´Þ¶óÁ³´Ù. ¶ÇÇÑ $SO_2$°¡ ÷°¡µÇ¾úÀ» ¶§ È°¼ºÀÌ ÁÙ¾îµå´Â °ÍÀ» °üÂûÇÒ ¼ö ÀÖ¾ú´Ù. Pt/ZSM-5-0.34 (0.34wt%ÀÇ Pt°¡ ÀÌ¿Â ±³È¯µÈ Pt/ZSM5)ÀÇ °æ¿ì¿¡´Â ÀûÀº ¾çÀÇ Pt¿¡µµ ºÒ±¸ÇÏ°í $N_2$ÀÇ ¼öÀ²Àº Pt/ZSM-5-9.85¿Í ºñ½ÁÇÏ¿´´Ù. ¾Æ¿ï·¯ $N_2O$ÀÇ ¼öÀ²ÀÌ ÁÙ¾îµé¾ú±â ¶§¹®¿¡ $N_2$ÀÇ ¼±Åõµ´Â Áõ°¡ÇÏ¿´´Ù. ¶ÇÇÑ Pt/ZSM-5-0.34 Ã˸Ŵ 150ppmÀÇ $SO_2$ °¡ ÷°¡µÈ ¹ÝÀÀ±âü¿¡¼­´Â $N_2$ÀÇ ¼öÀ²ÀÌ 38.0%¿¡¼­ 24.1%·Î °¨¼ÒÇÏ´Â °ÍÀÌ °üÂûµÇ¾úÀ¸¸ç $C_3H_6$ÀÇ ¿¬¼ÒÀ²Àº ÁÙ¾îµç´Ù´Â »ç½Çµµ ¾Ë ¼ö ÀÖ¾ú´Ù. ÀÌ·¯ÇÑ »ç½Ç·Î º¼ ¶§, Pt/ZSM5 »ó¿¡¼­ $SO_2$°¡ ÷°¡µÉ ¶§´Â $SO_2$°¡ ºÐÇصǾî Ã˸Ÿ¦ Çǵ¶½ÃÅ°´Â ¹ÝÀÀº¸´Ù´Â »êÈ­ÇÏ¿© $SO_3$°¡ »ý¼ºµÇ´Â ¹ÝÀÀÀÌ ÀϾ °¡´É¼ºÀÌ ³ô´Ù. ÀÌ°ÍÀº Pt/ZSM5°¡ Fe/ZSM5º¸´Ù $SO_2$ÀÇ ¿µÇâÀ» Àû°Ô ¹Þ´Â ÀÌÀ¯¸¦ ¼³¸íÇØ ÁÙ ¼ö ÀÖ´Ù. ´Ù¸¥ ÇÔ·®ÀÇ Pt¸¦ Æ÷ÇÔÇÏ´Â Pt/ZSM5¿¡ $FeCl_3$¸¦ ½ÂÈ­½ÃÅ°´Â ¹æ¹ýÀ¸·Î ¿©·¯ °¡Áö Pt ÇÔ·®À» °¡Áø Pt-Fe/ZSM5 Ã˸Ÿ¦ Á¦Á¶ÇÏ¿´´Ù. ¼±ÅÃÀû ȯ¿ø ¹ÝÀÀ¿¡¼­ PtÀÇ ÇÔ·®ÀÌ ¸¹Àº Ã˸ÅÀϼö·Ï ºÒÇÊ¿äÇÑ ºÎ»ê¹°ÀÎ COÀÇ ¼öÀ²À» ÁÙÀÏ ¼ö ÀÖ¾ú´Ù. ÀÌ ¶§ $N_2$ÀÇ ¼öÀ²Àº ÁÙ¾îµé°í $CO_2$ÀÇ ¼öÀ²Àº Áõ°¡ÇÏ´Â °ÍÀ» º¼ ¼ö ÀÖ¾ú´Ù. ÀÌ°ÍÀº ÷°¡µÈ Pt°¡ CO¿Í hydrocarbonÀ» »êÈ­½ÃÅ´À¸·Î½á ÀϾ´Â ¹ÝÀÀÀ¸·Î »ý°¢µÇ¾îÁø´Ù.

[±¹³» ÇÐÀ§³í¹®]

Microwave °¡¿­°ú polyol ¹æ¹ýÀ¸·Î ³ª³ëÅ©±âÀÇ ¼ø¼ö Pt, Pt-Ru ÇÕ±Ý ¹× Pt-CeO2 º¹ÇÕüÀÇ ¸Þź¿Ã ¿¬·áÀüÁö¿ë Ã˸ŠºÐ¸»À» »ê¼¼ ó¸®ÇÑ Åº¼Ò³ª³ëÆ©ºê (CNT)À§¿¡ Á¦Á¶ÇÏ¿´À¸¸ç, °áÁ¤±¸Á¶´Â X-¼± ȸÀý ºÐ¼®±â(XRD) ¹× Åõ°úÀüÀÚ Çö¹Ì°æ(TEM)À» »ç¿ëÇÏ¿© ºÐ¼®ÇÏ¿´´Ù. ¶ÇÇÑ ÀÌ·¸°Ô Á¦Á¶µÈ Àü±Ø¿¡ ´ëÇÑ ¸Þź¿ÃÀÇ »êȭƯ¼ºÀ» cyclic votammetry¿Í chronoamperemetry·Î ºÐ¼®ÇÏ¿´´Ù. 2 ºÐ°£ÀÇ microwave °¡¿­¿¡ ÀÇÇÑ polyol¹ýÀ¸·Î ³ª³ëÅ©±âÀÇ °áÁ¤Áú Ã˸ÅÀÔÀÚ°¡ CNTÀ§¿¡ Çü¼ºµÇ¾ú´Ù. Åë»óÀûÀ¸·Î Á¦Á¶µÈ ¹é±ÝÀÔÀÚÀÇ Å©±â´Â 7¡­12nmÀÎ ¹Ý¸é, Àü±¸Ã¼¿¡ sodium acetate¸¦ ÷°¡ÇÏ¿© Á¦Á¶ÇÑ ¹é±Ý Ã˸ÅÀÔÀÚ Å©±â´Â 3¡­5nm·Î º¸´Ù ¹Ì¼¼ÇÏ¿´À¸¸ç, µ¿ Àü±Ø¿¡ ´ëÇÑ ¸Þź¿Ã »êÈ­¹ÝÀÀ¿¡ µû¸¥ Àü·ù¹Ðµµµµ 147 mA/cm2ÀÇ º¸´Ù Å« °ªÀ» º¸¿´´Ù. CV ÃøÁ¤ °á°ú È°¼ºÈ­ µÈ ź¼Ò º¸´Ù´Â CNT°¡ Ã˸ŠÁöÁöü·Î ÀûÇÕÇÏ¿´´Ù. ¶ÇÇÑ microwave °¡¿­°ú polyol ¹ýÀ¸·Î Pt-Ru ÇÕ±ÝÃ˸Ű¡ Çü¼ºµÇ¾úÀ¸¸ç, Pt¿¡ RuÀ» ÷°¡ÇÔ¿¡ µû¶ó ¸Þź¿ÃÀÇ »êÈ­¹ÝÀÀ °³½ÃÀü¾ÐÀÌ °¨¼ÒÇÏ¿´´Ù. Cyclic votammetry ÃøÁ¤¿¡ ÀÇÇϸé Pt75Ru25 Ã˸Ű¡ °¡Àå Å« È°¼ºµµ¸¦ º¸À¯ÇÏ¿´À¸¸ç, ¶ÇÇÑ chronoamperemetry ºÐ¼®¿¡¼­µµ Pt75Ru25 Ã˸Ű¡ ¿ì¼öÇÑ Ã˸ÅÀÇ ¾ÈÁ¤¼ºÀÌ ÀÖ¾ú´Ù. ¶ÇÇÑ Pt¿¡ CeO2¸¦ ÷°¡Çϸé Ã˸ÅÀÇ È°¼ºµµ´Â Áõ°¡ÇÏ¿´´Ù.

[±¹³»³í¹®]

°íÁ¤Ãþ »ó¾Ð À¯Åë½Ä ¹ÝÀÀ±â¸¦ »ç¿ëÇÏ¿© Pt(1)-Fe(30)/MCM-41¿Í Fe(30)/MCM-41ÀÇ Ã˸Ż󿡼­ ¸ÞźÀÇ ºÐÇØ ¹ÝÀÀÀ» ¼öÇàÇÏ¿© ¼ö¼ÒÀÇ ¼öÀ²À» ±¸ÇÏ¿© PtÀÇ È¿°ú¸¦ Á¶»çÇÏ¿´´Ù. XRD ºÐ¼®À¸·Î ¹ÝÀÀ Àü Pt(1)-Fe(30)/MCM-41 Ã˸ſ¡¼­ Fe2O3¿Í PtÀÇ °áÁ¤»óÀÌ ³ªÅ¸³µ´Ù. SEM, EDS ºÐ¼®°ú ¸ÅÇÎ À̹ÌÁö·ÎºÎÅÍ Ã˸Šǥ¸é»ó¿¡ Fe, Pt, Si, OÀÇ ³ª³ë ÀÔÀÚµéÀÌ ±ÕÀÏÇÏ°Ô ºÐÆ÷ÇÔÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. XPS ºÐ¼®À¸·Î Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ µîÀÇ À̿°ú O2-, O-ÀÇ »ê¼ÒÁ¾ÀÌ Á¸ÀçÇÔÀ» ¾Ë ¼ö ÀÖ¾ú°í, Fe(30)/MCM-41 Ã˸ſ¡ Pt¸¦ 1 wt% ÷°¡Çϸé Ã˸Šǥ¸é»ó¿¡¼­ Fe2pÀÇ ¿øÀÚ ¹éºÐÀ²ÀÌ 13.39%¿¡¼­ 16.14%·Î Áõ°¡ÇÏ°í Pt4f´Â 1.51%À̾ú´Ù. ¼ö¼ÒÀÇ ¼öÀ²Àº Fe(30)/MCM-41º¸´Ù 3.2¹è ³ô¾Ò´Ù. Pt·ÎºÎÅÍ Fe·Î H2ÀÇ ½ºÇÊ¿À¹ö(spillover) È¿°ú·Î Fe ÀÔÀÚÀÇ È¯¿øÀ» Áõ°¡½ÃÅ°°í, Fe, Pt¿Í MCM-41ÀÇ Àû´çÇÑ »óÈ£ÀÛ¿ëÀ¸·Î ¹Ì¼¼ÇÑ ³ª³ëÀÔÀÚ¸¦ Ã˸Šǥ¸é»ó¿¡ ±ÕÀÏÇÏ°Ô ºÐ»êÀ» Áõ°¡½ÃÄÑ ¼ö¼Ò¼öÀ²À» Çâ»ó½ÃÄ×´Ù.

[±¹³» ÇÐÀ§³í¹®]

The volatile organic compounds(VOCs) have been recognized as major contributor to air pollution. The catalytic oxidation is one of the most important processes for VOCs destruction due to getting high efficiency at low temperature. In this study, monometallic Pt, Pd and bimetallic Pt-Ir, Pd-Ir were supported to TiO@_(2), ¥ã-Al@_(2)O@_(3), and SiO@_(2). In order to distribute metals uniformly, hydrogen spillover control was used. Xylene, toluene and MEK were used as reactants. The monometallic and bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS, TEM and BET analysis. As a result, Pt, Pd monometallic catalysts showed higher conversion than Pt-Ir, Pd-Ir bimetallic ones. Pd monometallic catalyst showed highest conversion on the TiO@_(2), ¥ã-Al@_(2)O@_(3) supporter. Pt monometallic catalyst showed highest conversion on the ¥ã-Al@_(2)O@_(3), SiO@_(2) supporter. The VOCs conversion of HSO control catalysts were higher than that of non-treated ones on the TiO@_(2), ¥ã-Al@_(2)O@_(3), SiO@_(2) supporter. Pt-Ir bimetallic catalyst showed highest conversion on the ¥ã-Al@_(2)O@_(3) supporter. In the VOCs oxidation, Pt, Pd monometallic catalysts had multipoint active sites, so they improved the range of Pt, Pd metal state. Therefore, monometallic catalysts were higher conversion of VOCs than bimetallic catalysts. And Pt-Ir bimetallic catalysts were high conversion of VOCs. HSO control effected on uniform distribution of Pt, Pd particles. In the kinetics, VOCs oxidation was appeared on the first order reaction. The activation energy of HSO control catalysts were higher than that of non-treated ones on the TiO@_(2), ¥ã-Al@_(2)O@_(3), and SiO@_(2) supporter. In case of MEK reactants, the activation energy of non-treated catalysts TiO@_(2), ¥ã-Al@_(2)O@_(3), and SiO@_(2) supporter were higher than that of HSO control ones. In this study, Pt, Pd monometalic catalysts promoted oxidation conversion of VOCs. In addition to, HSO control promoted oxidation conversion of VOCs on the TiO@_(2), ¥ã-Al@_(2)O@_(3), and SiO@_(2) supporter.

[±¹³» ÇÐÀ§³í¹®]

In this paper, Au-Ge/Pt/Au ohmic contact to n-type GaAs with 5nm thickness of Pt first layer was effective in reducing the dependency of annealing temperature. The specific contact resistance was $2.3 times 10^{-4} ~ 6.1 times 10^{-4} §Ù§²$ at the temperature range of 350~450¡É. Pt first layer was effective not only in suppressing out-diffusion of Ga and As but also in reducing the alloying depth of GaAs substrate with contact metals. From these reasons, it was thought that interface morphology of the metal/GaAs and surface morphology were improved. X-ray diffraction, atomic force microscopy, scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy were utilized.

[±¹³» ÇÐÀ§³í¹®]

º» ¿¬±¸¿¡¼­´Â Pt-ZrP membraneÀ» Á¦Á¶ÇÏ¿© ÀڱⰡ½ÀÇü ´ÜÀ§ PEMFC¸¦ ±¸¼ºÇÏ¿´°í, ÀüÇØÁú¸· ³»ºÎÀÇ Pt ÀÔÀÚÅ©±â, ºÐÆ÷µµ ¹× ÇÔħ·®ÀÌ ÀڱⰡ½À¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú, zirconium phosphate ÇÔħ·®ÀÌ ´ÜÀ§ÀüÁö ¼º´É¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» °íÂûÇÏ¿´´Ù. ÀüÇØÁú¸·³»¿¡ ÇÔħµÈ Pt Ã˸Ŵ ¸· ¾ç´Ü¿¡¼­ crossoverµÇ´Â ¼ö¼Ò¿Í »ê¼Ò¸¦ ¹ÝÀÀ½ÃÄÑ ¹°À» »ý¼ºÇÏ¿© ¸·À» °¡½ÀÇÏ¿´À¸¸ç, zirconium phosphate´Â ÀüÇØÁú¸·³»ÀÇ ¼öºÐÀ¯Áö¿Í Àüµµ¼ºÀ» Çâ»ó½ÃÄ×´Ù. ÀüÇØÁú¸·³»¿¡¼­ °í¸£°Ô ºÐÆ÷µÈ 10 nm ÀÌÇÏÀÇ PtÀÔÀÚ´Â ÀڱⰡ½ÀÇü PEMFCÀÇ ¼º´ÉÀ» Çâ»ó½ÃÄ×À¸¸ç, TEM, EDS, ¹× ICPºÐ¼®À¸·Î PtÀÔÀÚÀÇ Å©±â, ºÐÆ÷µµ ¹× ÀüÇØÁú¸·³»ÀÇ ÇÔħ·®À» È®ÀÎÇÏ¿´´Ù. ½ÇÇèÁ¶°ÇÀÌ 0.5 mM Pt(NH_(3))_(4)Cl_(2) ¿ë¾×¿¡¼­ ó¸®ÇÑ ÈÄ, 0.1 M NaBH_(4)¿ë¾×¿¡¼­ 5ºÐ µ¿¾È ȯ¿øÇÔħ 󸮸¦ ÇÏ¿´À» ¶§ °¡Àå ÁÁÀº ´ÜÀ§ÀüÁö ¼º´ÉÀ» ³ªÅ¸³»¾ú´Ù. ´ÜÀ§ÀüÁöÀÇ ¿îÀü¿Âµµ¸¦ Áõ°¡½ÃÄѵµ zirconium phosphateÀÇ °áÁ¤¼ö·Î ÀÎÇÏ¿© ÀüÇØÁú¸·ÀÇ Àüµµµµ°¡ À¯ÁöµÇ¾ú´Ù. FT-IR°ú NMR ºÐ¼® °á°ú·Î ¥á-zirconium phosphate°¡ »ý¼ºµÇ¾úÀ½À» È®ÀÎÇÏ¿´À¸¸ç, 0.5 M ZrOCl_(2) ¿ë¾×¿¡¼­ ó¸®ÇÑ ÈÄ, 1 M H_(2)SO_(4)¿ë¾×¿¡¼­ ¹ÝÀÀ½ÃÄ×À» ¶§¿¡ °¡Àå ÁÁÀº ´ÜÀ§ÀüÁö ¼º´ÉÀ» ³ªÅ¸³»¾ú´Ù.

[±¹³»³í¹®]

The $(SrCa)TiO_3(SCT)$ thin films are deposited on Pt-coated electrode ($Pt/TiN/SiO_2/Si$) using RF sputtering method at various deposition temperature. The dielectric constant of SCT thin films were increased with the increase of deposition temperature, and changed almost linearly in temperature ranges of $-80{\sim}+90[^{\circ}C]$. Also, SCT thin films was observed the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency was observed above 200[kHz]. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of $25{\sim}100[^{\circ}C]$ can be divided into three characteristic regions with different mechanism by the increasing current. The region 1 below 0.8[MV/cm] shows the ohmic conduction. The region 2 can be explained by the Child's law, and the region 3 is dominated by the tunneling effect.

[±¹³»³í¹®]

º» ¿¬±¸¿¡¼­´Â Pt/GDC/Pt ¼¿À» ÀÌ¿ëÇÏ¿© »ó¾Ð¿¡¼­ ¹°°ú Áú¼Ò·ÎºÎÅÍ Àü±âÈ­ÇÐÀûÀ¸·Î ¾Ï¸ð´Ï¾Æ¸¦ ÇÕ¼ºÇÏ´Â ¿¬±¸¸¦ ¼öÇàÇÏ¿´´Ù. ¼öºÐÀÌ Æ÷È­µÈ Áú¼ÒºÐÀ§±â¿¡¼­ ÀÛµ¿¿Âµµ($400{\sim}600^{\circ}C$)¿Í Àü¾Ð(OCV(Open Circuit Voltage)~1.2 V)¿¡ ´ëÇÑ Àü±âÈ­ÇÐÀû Ư¼º Æò°¡¸¦ ¼öÇàÇÏ¿´°í, ¾Ï¸ð´Ï¾Æ ÇÕ¼º·®À» Á¤·® ºÐ¼®ÇÏ¿´´Ù. Á¤Àü¾Ð ÇÏ¿¡¼­ ÀÛµ¿¿ÂµµÀÇ Áõ°¡¿¡ µû¶ó Àΰ¡ Àü·ùÀÇ Áõ°¡·Î ¾Ï¸ð´Ï¾Æ ÇÕ¼º·®Àº Áõ°¡ÇÏ¿´À¸³ª, Pt Àü±Ø¿¡¼­ ¾Ï¸ð´Ï¾Æ ÇÕ¼º¿¡ ÇÊ¿äÇÑ Áú¼ÒÀÇ È­ÇÐÀû Çظ® ÈíÂø ¹ÝÀÀÀÇ ÇÑ°è·Î Æз¯µ¥ÀÌ È¿À²(faradaic efficiency)Àº °¨¼ÒÇÏ¿´´Ù. $600^{\circ}C$¿¡¼­ ÃÖ´ë ¾Ï¸ð´Ï¾Æ ÇÕ¼º·®ÀÎ $3.67{\times}10^{-11}mols^{-1}cm^{-2}$(6.7 mA) ¾ò¾ú°í Æз¯µ¥ÀÌ È¿À²Àº 0.1%ÀÌ´Ù.

[±¹³» ÇÐÀ§³í¹®]

Áß´Ù°ø¼º ź¼ÒºÐÀÚüÀÎ CMK-3´Â 6°¢ÇüÀÇ °áÁ¤ ±¸Á¶¸¦ °®´Â SBA-15¸¦ ÁöÁöü·ÎÇÏ¿© À̸¦ źȭ½ÃÄÑ ¼º°øÀûÀ¸·Î ÇÕ¼ºÇÏ¿´°í, Pt ³ª³ëÀÔÀÚµéÀ» ´ãÁö½ÃÄÑ Pt-CMK-3¸¦ ÇÕ¼ºÇß´Ù. Áß´Ù°ø¼º Pt-CB/Pt-CMK-3 È¥ÇÕÃ˸ŠºñÀ²Àº Pt-CB(1-x)/Pt-CMK-3x (x = 0.0, 0.4, 0.5, 0.7, 1.0)·Î ³ªÅ¸³»¾ú´Ù. È¥ÇÕÃ˸Ÿ¦ ¿¬·áÀüÁöÀÇ ¾ç±Ø¿¡ »ç¿ëÇÏ¿© ¿¬·áÀüÁöÀÇ ¹°Áú Àü´Þ°ú ³»±¸¼ºÀ» Çâ»ó½ÃÄ×´Ù. Åõ°úÀüÀÚÇö¹Ì°æ (TEM) °ú X-¼± ȸÀýºÐ¼®¹ý (XRD) ºÐ¼®À» ÅëÇؼ­ Pt ³ª³ëÀÔÀÚ°¡ ÀÀÁýµÇÁö ¾Ê°í °í¸£°Ô ºÐ»êµÇ¾î ÀÖÀ¸¸ç CMK-3¿¡ ´ãÁöµÈ Pt ³ª³ëÀÔÀÚ°¡ 2.3 nm ÀÌÇÏÀÇ Å©±â·Î ºÐÆ÷µÇ¾î ÀÖÀ½À» È®ÀÎÇß´Ù. Pt ³ª³ëÀÔÀÚÀÇ Å©±â´Â Pt-CBº¸´Ù Pt-CMK-3°¡ ´õ ÀÛ´Ù. ÀÌ´Â µÎ ¹°ÁúÀÇ Àû´çÇÑ È¥ÇÕÀ» ÅëÇØ ¹°Áú Àü´ÞÀ²°ú ¾ç±Ø¿¡¼­ ¹ß»ýÇÏ´Â ¹°ÀÇ ¹èÃâÀ» Çâ»ó½Ãų ¼ö ÀÖÀ½À» ÀǹÌÇÑ´Ù. X-¼± ±¤ÀüÀÚ ºÐ±¤¹ý (XPS) ºÐ¼®À» ÅëÇؼ­ Pt-CMK-3ÀÇ metallic PtÀÇ ¾çÀ» È®ÀÎÇßÀ¸¸ç Àü±âÈ­ÇÐÀû È°¼º Ç¥¸éÀû (ECSA) Àº ¼øȯÀü¾ÐÀü·ù¹ý (CV) ºÐ¼®À» ÅëÇØ Pt-CB(1-x)/Pt-CMK-3x ¿¡¼­ x = 0.0, 0.4, 0.5, 0.7, 1.0 ÀÏ ¶§ °¢°¢ 27.4 m2 g-1, 38.9 m2 g-1, 44.7 m2 g-1, 36.9 m2 g-1, 30.8 m2 g-1 À¸·Î ÃøÁ¤µÇ¾ú´Ù. ¼¿ ¼º´É Æò°¡ÀÇ °æ¿ì 1 ±â¾Ð, 80 oC ¿¡¼­ À½±Ø°ú ¾ç±Ø¿¡ »ê¼Ò¿Í ¼ö¼Ò¸¦ ºÐ´ç 100 cc ¾¿ °ø±ÞÇÏ¿© ½Ç½ÃÇßÀ¸¸ç ÃÖ´ë Àü·Â¹Ðµµ´Â Pt-CB(1-x)/Pt-CMK-3x ¿¡¼­ x = 0.0, 0.4, 0.5, 0.7, 1.0 ÀÏ ¶§ °¢°¢ 0.26 W/cm2, 0.70 W/cm2, 0.75 W/cm2, 0.55 W/cm2 ±×¸®°í 0.46 W/cm2 À¸·Î ³ªÅ¸³µ´Ù. ÀÌ´Â ¼øȯÀü¾ÐÀü·ù¹ý ºÐ¼® °æÇâ°ú ÀÏÄ¡ÇÔÀ» ¾Ë ¼ö Àִµ¥ Pt-CB(0.5)/Pt-CMK-3(0.5) ¼¿ ¼º´ÉÀÇ °æ¿ì Pt-CMK-3¸¸ »ç¿ëÇÒ ¶§ º¸´Ù 63%, Pt-CB¸¸ »ç¿ëÇÒ ¶§ º¸´Ù 322%ÀÇ ¼º´ÉÀÌ Çâ»óµÇ¾ú´Ù. ¼¿ ¼º´ÉÀÇ Çâ»óÀº Pt-CB¿Í Pt-CMK-3ÀÇ »óÈ£ÀÛ¿ëÀ¸·Î ÀÎÇØ ¹°Áú Àü´Þ°ú ¹ÝÀÀ¿¡ Âü¿©ÇÑ PtÀÇ ÀÌ¿ëÀ²ÀÌ Áõ°¡Ç߱⠶§¹®ÀÌ´Ù. ³»±¸¼º ½ÇÇè (ADT) Àº 100 % °¡½ÀÁ¶°Ç¿¡¼­ 100 ½Ã°£ µ¿¾È 0.6 V ¿¡¼­ÀÇ Àü·ù¹Ðµµ¸¦ ÃøÁ¤Çß´Ù. Àü·ù¹Ðµµ´Â Pt-CB(1-x)/Pt-CMK-3x ¿¡¼­ x = 0.0, 0.4, 0.5, 0.7, 1.0 ÀÏ ¶§ °¢°¢ 56.9 %, 15.5 %, 12.2 %, 14.6 % ±×¸®°í 10.0 % °¨¼ÒÇß´Ù. À̸¦ ÅëÇØ Pt-CB ¿¡ ºñÇØ Pt-CMK-3 ¹× Pt-CB(1-x)/Pt-CMK-3x È¥ÇÕÃ˸ÅÀÇ ³»±¸¼ºÀÌ ´ëÆø Çâ»óµÇ´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. Start-up/Shut-down ºÐ¼®Àº 1 ±â¾Ð, 80 oC ¿¡¼­ À½±Ø°ú ¾ç±Ø¿¡ »ê¼Ò¿Í ¼ö¼Ò¸¦ ºÐ´ç 100 cc ¾¿ °ø±ÞÇÏ¿© ½Ç½ÃÇÏ¿´´Ù. Pt-CMK-3¿Í Pt-CB Ã˸Ÿ¦ »ç¿ëÇßÀ» ¶§ 30 ÃÊ µ¿¾È °³¹æȸ·ÎÀü¾Ð »óÅÂÀÇ Àü·ù¹Ðµµ¸¦ ÃøÁ¤ÇÏ°í µÚÀ̾î 60 ÃÊ µ¿¾È 0.5 V ¿¡¼­ÀÇ Àü·ù¹Ðµµ¸¦ ÃøÁ¤Çϸç ÃÑ 100 ½Ã°£ µ¿¾È Àü·ù¹Ðµµº¯È­¸¦ ÃøÁ¤ÇÏ¿´´Ù. ¾ç±Ø°ú À½±Ø¿¡ Pt-CMK-3 Ã˸Ÿ¦ »ç¿ëÇÑ ºÐ¸®¸· Àü±Ø Á¢ÇÕü (MEA) ÀÇ °æ¿ì 93.4 % ÀÇ È¸º¹À²À» º¸¿´À¸¸ç Pt-CB Ã˸Ÿ¦ »ç¿ëÇÑ ºÐ¸®¸· Àü±Ø Á¢ÇÕüÀÇ °æ¿ì 76.5 % ÀÇ È¸º¹À²À» º¸¿´´Ù. ÀüÀÚ ±â±âÀÇ °æ¿ì on-off »çÀÌŬ¿¡¼­ÀÇ È¸º¹À²ÀÌ Áß¿äÇÏ´Ù. Pt-CB Ã˸ź¸´Ù Pt-CMK-3 Ã˸Ÿ¦ »ç¿ëÇßÀ» ¶§ÀÇ ¼º´ÉÀÌ ´õ ³ôÀº ÀÌÀ¯´Â Pt-CMK-3ÀÇ Pt ³ª³ëÀÔÀÚ ºÐ»êµµ°¡ ³ôÀ¸¸ç ÀÀÁýµÇÁö ¾Ê°í °í¸£°Ô ºÐÆ÷µÇ¾î Àֱ⠶§¹®ÀÌ´Ù. ÀÌ ¿¬±¸¸¦ ÅëÇØ Áß´Ù°ø¼º CMK-3°¡ »ó¿ë Pt-CBÀÇ ÁöÁöü¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ¿ì¼öÇÑ ¼º´ÉÀ» °¡Áö°í ÀÖÀ½À» È®ÀÎÇÒ ¼ö ÀÖ´Ù.

/ 13,887

Filters

º¸±âÇü½Ä

Á¤·Ä¼ø¼­

Æ÷¸Ë

¸®½ºÆ® ¼ö