NDSL 38,415 Link page¿¡¼­ [¿ø¹®º¸±â] ¹öÆ°À» Ŭ¸¯Çϼ¼¿ä.

[±¹³» ÇÐÀ§³í¹®]

Because sea cucumber has a high nutritional value and medicinal value, it is seen as an important sea cucumber product, which has a high economic value. Because the influence of ancient food culture. China is the world's largest sea cucumber of the consumer. The output of wild sea cucumbers has can not satisfy the needs of people, also, in 2012 China's SARS outbreak , Raise the resistance of the edible sea cucumber. Sea cucumber of the medicinal value by the people, Sea cucumber of the sharp increase in demand.
 In 1954, China began to sea in education vaccine research, now has become the industrialization of industry. Sea cucumber hot all over the country and sea cucumber to the market demand continue to grow. On the other hand,Holothurian culture area increases,Holothurian culture techniques also growing. According to the sea cucumber system, there are eight different ways. This paper mainly chose holothurian culture in the process of the representative of three. Pond culture(³ëÁö¸ø¾ç½Ä), seed releasing(¹æ·ù¾ç½Ä), onshore recirculating aquaculture(À°»ó¼øȯ¿©°ú½Ä), Income and expenses of the investigation¡£Breeding in a different way, economic cost different, economic returns are also different.
 According to the tending of the cost of hand three kinds of breeding methods, Twenty years ago, we made a cash flow chart for each sea cucumber farm. And for sea cucumbers into economic analysis NPV, IRR, b/c. Through three breeding mode of economic analysis and choose the appropriate way of breeding, Raise the breeding to engage in income, Promoting China's sea cucumber to the breeding efficiency of the development

[±¹³» ÇÐÀ§³í¹®]

ÀϹÝÀûÀ¸·Î ±¸·æÆ÷¿¡¼­ Àå±â°ù¿¡ À̸£´Â Àå±â¹Ýµµ Çؾȿ¡´Â Çؾȴܱ¸°¡ ¿¬¼ÓÀûÀ¸·Î ÆîÃÄÁ® ÀÖÀ¸¸ç, ±¤¾î ¾ç½ÄÀåÀÌ ÁýÁßÀûÀ¸·Î ºÐÆ÷Çϴµ¥ µ¿ÇؾÈÀº ³²ÇؾȰú´Â ´Þ¸® ¹Ù´Ù°¡ °ÅÄ¥±â ¶§¹®¿¡ ÀÌ°÷ÀÇ ¾ç½ÄÀåÀº ¹Ù´å°¡ÀÇ À°Áö¿¡ ¼³Ä¡µÇ¾î ÀÖ°í, ¹Ù´å¹°À» ²ø¾î¿Ã·Á »ç¿ëÇÑ´Ù°í ¾Ë·ÁÁø´Ù. ±×·¯³ª Áö¿ªÀÇ ¾ç½ÄÀåÀº ±¤¾î ÀÌ¿Ü¿¡µµ ´Ù¾çÇÑ ¾îÁ¾À» ¾ç½ÄÇÏ°í ÀÖ°í, ¾ð±ÞÇÑ À°»ó ¼öÁ¶½Ä ¾ç½ÄÀå ÀÌ¿Ü¿¡µµ ÀÌ¿Ü·Î ´Ù¾çÇÑ ¾ç½ÄÀåÀÌ ºÐÆ÷ÇÏ°í ÀÖ¾î Á» ´õ ½Éµµ ÀÖ´Â Áö¿ªÀÇ °æ°ü¿¬±¸¸¦ À§ÇØ Á¶»ç¸¦ ½ÃÀÛÇÏ°Ô µÇ¾ú´Ù. ÀÌ»óÀÇ ¿¬±¸¸ñÀûÀ» ´Þ¼ºÇϱâ À§ÇØ ÇÊÀÚ´Â ´ÙÀ½ÀÇ ¼¼ °¡Áö¿¡ ÁÖ¾ÈÁ¡À» µÎ°í ¿¬±¸¸¦ ÁøÇàÇÏ¿´´Ù. ù°, ¾ç½ÄÀåÀÌ Àå±â¹Ýµµ¿¡ ÁýÁßÀûÀ¸·Î ºÐÆ÷ÇÒ ¼ö ÀÖ¾ú´ø ÀÚ¿¬Àû, »çȸÀû, °æÁ¦Àû ¹è°æÀ» ¹àÇô º¸°í, ÀÌ¿¡ µû¶ó Â÷ÀÌ°¡ ³ª´Â ¾ç½ÄÀåÀÇ ÀÔÁö¸¦ À¯ÇüÈ­ ½ÃÄѺ»´Ù. ±×¸®°í ´Ù¸¥ Áö¿ªÀÇ ¾ç½Ä¾÷°ú ±¸º°µÇ´Â Àå±â¹Ýµµ ¾ç½Ä¾÷ÀÇ Æ¯Â¡À» ÆľÇÇÑ´Ù. µÑ°, ¼ö»ê¾ç½Ä¾÷ÀÇ ¼ºÆд ¾ç½ÄÀåÀÇ È¯°æÀ» ¾ó¸¶³ª ½ÇÁ¦ ¹Ù´Ù¿Í °°Àº ȯ°æÀ» ¸¸µé¾î ÁÖ´À³Ä¿¡ ´Þ·ÁÀÖ´Ù. °£È¤ µ¿Çؾȿ¡¼­ ¹ß»ýÇÑ ÀûÁ¶Çö»ó, ¹éÈ­Çö»ó ¹Ù´Ù»ç¸·È­·Î ºÒ¸®´Â ¡®¹éÈ­Çö»ó¡¯Àº 1990³â´ë ¸»ºÎÅÍ µ¿ÇؾÈÀÇ ¿µ´ö°ú ±¸·æÆ÷¡¤Àå±â¸é ÀÏ´ë ¿¬¾È¿¡¼­ ³ªÅ¸³ª±â ½ÃÀÛÇÏ¿© Àüº¹°ú ¼º°Ô°¡ ÁÖµÈ ¾îÀå¿¡ ¸¹Àº ÇÇÇظ¦ ÀÔÇû´Ù. Çؼö¸éÀÇ ±â¿Â»ó½Â°ú À°ÁöÀÇ ¿À¿°¹°ÁúÀÌ ¿øÀÎÀÌ µÇ¾î ³ªÅ¸³­ ¹éÈ­Çö»óÀº ¿¬¾È ¾Ï¹ÝÁö´ëÀÇ ÇØÁ¶·ù¸¦ °¨¼Ò½ÃÅ°°í ¼®È¸Á¶·ù¸¦ Áõ°¡½ÃÄÑ ¾îȹ·®ÀÌ ÁÙ¾îµå´Â ÇÇÇظ¦ ÀÏÀ¸Å²´Ù. , ´ë±Ô¸ð Æø¼³ µî ¿¹ÃøÇÏÁö ¸øÇÑ È¯°æº¯È­·Î ¸¹Àº ÇÇÇØ°¡ ¹ß»ýÇϱ⵵ ÇÑ´Ù. ÀÌ°÷ÀÇ ¾ç½Ä¾÷ Á¾»çÀÚµéÀº ¾î¶°ÇÑ ±â¼ú°ú ¹æ¹ýÀ» ÅëÇØ ½ÇÁ¦ ¹Ù´Ù ȯ°æ°ú ºñ½ÁÇÑ »óŸ¦ À¯ÁöÇϸç, ¿¹±âÄ¡ ¸øÇÑ È¯°æº¯È­¿¡ ´ëóÇÏ¿© »ì¾Æ°¡°í Àִ°¡¸¦ »ìÆ캸´Â °Í ¶ÇÇÑ Áß¿äÇÒ °ÍÀ¸·Î »ý°¢µÈ´Ù. ¸¶Áö¸·À¸·Î ¾ç½ÄÀå ÀÔÁö ÀüÈÄ ÀÌ°÷ÀÇ °æ°üÀ» ºñ±³ °íÂûÇÔÀ¸·Î½á Àå±â¹Ýµµ ¿¬¾ÈÀÇ ¾îÃÌ°æ°üÀÌ ¾î¶»°Ô º¯È­ ¹ßÀüµÇ¾î ¿Ô´ÂÁö¸¦ ÆľÇÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î »ý°¢µÈ´Ù. À̸¦ ¹ÙÅÁÀ¸·Î Àå±â¹ÝµµÀÇ Áö¿ª¼ºÀ» µµÃâÇÏ°í, ºñ·Ï ÀϺÎÁö¿ª À̱â´Â Çϳª ÇâÈÄ ±¹³» ¼ö»ê¾÷ Áß µ¿ÇØ¾È ¾ç½Ä¾÷ÀÇ ÇöȲ°ú ¹ßÀü¹æÇâ µîÀ» ÀÌÇØÇÏ°í ¿¹ÃøÇÏ´Â µ¥ ÀÏÁ¶ÇÒ °ÍÀ¸·Î ±â´ëÇÑ´Ù.

[±¹³» ÇÐÀ§³í¹®]

The mariculture fisheries system in Korea has been regulated tight through various kinds if laws and regulations established by the central and local governments. As mariculture fisheries can be carried on only when fishery right is acquired through governmental license, it is very hard to enter the industry. Moreover, the contents of the laws and regulations concerning the mariculture fisheries are prescribed so detailedly that the autonomy of the industry is restricted seriously. Korean industries are now faced with an extreme situation caused by limitless competition in the open-economy system. As a result, the Government is trying to improve gradually the present regulation systems in every field of economic activities in order to adapt the industries to new circumstances and to enhance their international competitiveness. With regard to fisheries, the Governmental measures in the above sense can be found in the enactment of the 'Fishing Ground Management Act', which shows a strong political will to mitigate the entrance barrier into the existing fishing grounds by introducing the simultaneous renewal system of fishery license. However, as the Governmental measures are not sufficient to get rid of demerits exposed until now, it is recommended to take more improvement measures. They are chiefly as follows; 1. To formulate a simple and consistent legal system in the licensed fisheries 2. To relax the tight restriction on new entrance to licensed fisheries by improving the priority order 3. To set stricter standards of eligibility for becoming a member of a fishing village community. 4. To shorten the validity time of fishery license and to abolish its extension 5. To simplify the procedures of establishing 'Fishing Ground Utilization Program' under the reflection of mariculturists' opinions through public hearings 6. To allow the flexible modification of the terms of fishery license in order to respect the autonomy of mariculturists 7. To abolish the uniform restrictions on the method of cultivation, cultivated species and the depth of fishing ground (i.e. cultivating farm), and to adjust its location and isolation distance to the regional characteristics 8. To change the present item by item license system into section by section system Though the above proposal refers to some provisions of the fisheries laws and regulations, their revision will positively have pervasive effect on the small-scale mariculturing business. And though the improvement measures may bring about a great deal of stubborn resistance from the side of vested license holders, it must be overcome sooner or later under a social consensus for the development of highly competitive mariculture. Of course, the improvement in the true sense of the word cannot be achieved simply by the revision of some provisions. It cannot be overemphasized that keeping a close watch on their practical enforcement and voluntary reporting of offences to the authorities concerned on the part of mariculturists are very important.

[±¹³» ÇÐÀ§³í¹®]

Integrated multi-trophic aquaculture (IMTA) is one approach to mitigate some of the negative environmental impacts associated with excess inorganic and organic nutrients of finfish aquaculture and has been steadily gaining momentum worldwide. This study aimed to evaluate environmental benefits as well as economic effectiveness of multi-trophic aquaculture (IMTA) compared to the monoculture system. Based on the biological and economic data collected from a pilot IMTA project for Korean rockfish(Sebastes schlegelii), Pacific oyster(Crassostrea gigas), and sea cucumber(Stichopus japonicus) in Yangyang-gun, Gangwon-do, South Korea, farming revenue and expenses during the farming period were evaluated. In addition, as index of economic evaluation, the net present value (NPV) and internal rate of return (IRR) of 10-year cash flow and cash outflow were estimated.
 The results of the economic analysis indicated that the IMTA system would have higher economic outcomes than those of the monoculture system. In particular, NPV and IRR of IMTA system were estimated to be higher than those of the monoculture system with the discount rate of 4.5%. The results of sensitivity analysis on survival rates and market prices as main biological and economic variables indicated that the economic viability of IMTA system would be less vulnerable to production and market condition changes in comparison with monoculture system. Finally, the environmental benefits of IMTA system were evaluated to be about 8.5 million¡­93.2 million KRW.

[±¹³» ÇÐÀ§³í¹®]

º» ¿¬±¸ÀÇ ¸ñÀûÀº ÇнÀ±â¼ú ÈÆ·Ã ÇÁ·Î±×·¥ÀÌ ÃʵîÇлýÀÇ ÇнÀ¾ç½Ä º¯È­¿¡ ¿µÇâÀ» ¹ÌÄ¡´ÂÁöÀÇ ¿©ºÎ¸¦ °ËÁõÇϴµ¥ ÀÖ´Ù. ÀÌ·¯ÇÑ ¸ñÀûÀ» ´Þ¼ºÇϱâ À§ÇÏ¿© ¿¬±¸ÀÚ´Â ÇнÀ±â¼ú ÈÆ·ÃÀÌ ÇнÀÀÚÀÇ ÇнÀ¾ç½Ä ÇÏÀ§ ¿äÀο¡ º¯È­¸¦ ÁÙ °ÍÀ¸·Î °¡Á¤ÇÏ¿´À¸¸ç ±× ±¸Ã¼ÀûÀÎ °¡¼³Àº ´ÙÀ½°ú °°´Ù. ù°, ÇнÀ±â¼ú ÈÆ·ÃÀ» ¹ÞÀº ÇнÀÀÚ´Â ÇнÀ¾ç½ÄÀÌ º¸´Ù µ¶¸³ÀûÀÎ °æÇâÀ¸·Î º¯È­ÇÒ °ÍÀÌ´Ù. µÑ°, ÇнÀ±â¼ú ÈÆ·ÃÀ» ¹ÞÀº ÇнÀÀÚ´Â ÇнÀ¾ç½ÄÀÌ º¸´Ù Çùµ¿ÀûÀÎ °æÇâÀ¸·Î º¯È­ÇÒ °ÍÀÌ´Ù. ¼Â°, ÇнÀ±â¼ú ÈÆ·ÃÀ» ¹ÞÀº ÇнÀÀÚ´Â ÇнÀ¾ç½ÄÀÌ º¸´Ù Âü¿©ÀûÀÎ °æÇâÀ¸·Î º¯È­ÇÒ °ÍÀÌ´Ù. À§ÀÇ °¡¼³À» °ËÁõÇϱâ À§ÇÏ¿© ¿¬±¸ ´ë»óÀº ºÎ»ê±¤¿ª½Ã ¼ÒÀç K ÃʵîÇб³ 5Çгâ 1°³ ÇбÞ(n=32)À» ½ÇÇèÁý´ÜÀ¸·Î ¼±Á¤ÇÏ¿´´Ù. ½ÇÇèÁý´Ü¿¡ ÇнÀ±â¼ú ÈÆ·Ã ÇÁ·Î±×·¥À» ½Ç½ÃÇÏ¿´°í, ÇнÀ¾ç½Ä¿¡ ´ëÇÑ »çÀü¡¤»çÈÄ¡¤Ãß¼ö °Ë»ç¸¦ ½ÃÇàÇÏ¿´´Ù. ¿¬±¸¿¡ »ç¿ëµÈ µµ±¸ Áß, ÇнÀ¾ç½Ä °Ë»ç´Â Grasha¿Í Reichmann(1974)ÀÇ ÇнÀ¾ç½Ä °Ë»ç(GRSLSQ)¸¦ °íµ¿Çý(2001)°¡ À籸¼ºÇÑ °ÍÀ» »ç¿ëÇÏ¿´°í, ÇнÀ±â¼ú ÈÆ·Ã ÇÁ·Î±×·¥Àº º¯¿µ°è¡¤¹ÚÇѼ÷(2004)ÀÌ °³¹ßÇÑ ÃʵîÇлý¿ë ÇнÀ ±â¼ú ÈÆ·Ã ÇÁ·Î±×·¥À» ¹ÙÅÁÀ¸·Î ¿¬±¸ÀÚÀÇ ¿¬±¸ ¸ñÀû¿¡ ¸Â°Ô ¼öÁ¤¡¤º¸¿ÏÇÑ °ÍÀ» »ç¿ëÇÏ¿´´Ù. °á°úÀÇ Ã³¸®´Â ÇнÀ¾ç½ÄÀÇ »çÀü °Ë»ç, »çÈÄ °Ë»ç ±×¸®°í Ãß¼ö °Ë»ç °á°úÀÇ Â÷À̸¦ .05¼öÁØ¿¡¼­ t °ËÁõÇÏ¿´´Ù. ÀÌ»ó°ú °°Àº ¿¬±¸ÀÇ ÀýÂ÷¿¡ µû¶ó °¡¼³À» °ËÁõÇÑ °á°ú´Â ´ÙÀ½°ú °°´Ù. ù°, ÇнÀ±â¼ú ÈÆ·ÃÀº ÇнÀÀÚÀÇ ÇнÀ¾ç½ÄÀ» º¸´Ù µ¶¸³ÀûÀÎ °æÇâÀ¸·Î º¯È­½ÃÅ°´Âµ¥ À¯ÀǹÌÇÑ È¿°ú°¡ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. µÑ°, ÇнÀ±â¼ú ÈÆ·ÃÀº ÇнÀÀÚÀÇ ÇнÀ¾ç½ÄÀ» º¸´Ù Çùµ¿ÀûÀÎ °æÇâÀ¸·Î º¯È­½ÃÅ°´Âµ¥ À¯ÀǹÌÇÑ ¿µÇâÀ» ÁÖÁö ¸øÇß´Ù. ¼Â°, ÇнÀ±â¼ú ÈÆ·ÃÀº ÇнÀÀÚÀÇ ÇнÀ¾ç½ÄÀ» º¸´Ù Âü¿©ÀûÀÎ °æÇâÀ¸·Î º¯È­½ÃÅ°´Âµ¥ À¯ÀǹÌÇÑ È¿°ú°¡ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÀÌ·¯ÇÑ ¿¬±¸ÀÇ °á°ú, ÇнÀ±â¼ú ÈÆ·Ã ÇÁ·Î±×·¥ÀÇ Àû¿ëÀº ÃʵîÇб³ ¾Æµ¿ÀÇ ÇнÀ¾ç½ÄÀ» º¸´Ù µ¶¸³ÀûÀÌ°í Âü¿©ÀûÀÎ °æÇâÀ¸·Î º¯È­½ÃÅ°´Âµ¥ ±àÁ¤ÀûÀÎ È¿°ú°¡ ÀÖÀ½À» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

[±¹³» ÇÐÀ§³í¹®]

The concept of Internet of Things (IoT) is rapidly growing and it will deliver us to the new future of the electronic technology. IoT offers us technology in which every objects in our daily life will be equipped with microcontroller and has ability to sense and communicate each others. This research attempts to develop a remote control and monitoring system of a smart fish farm by using IoT technology. In this system, we propose to build a smart fish farming that has ability to monitor several sensors such as: oxygen level, temperature, pH, and water level. It also provide a close loop water regulation and water flow in the aquarium which are controlled by Arduino microcontroller and supported by MQTT communication protocol. Microcontroller receives commands whether from mobile application or website application. The proposed system is very powerful to create a natural environment of fish to grow and life. This system is capable to do control and monitoring through mobile and web application. Moreover, this system has main advantage which is can minimize the human effort for the fish farming.
 Appendix I 
 
 A. Source code of microcontroller 1, controlling Aquarium 1 and

[±¹³» ÇÐÀ§³í¹®]

¸Ô°Å¸®´Â ¾î´À ½Ã´ë¿Í ¾î¶² °ø°£¿¡¼­µµ Àΰ£¿¡°Ô °¡Àå Áß¿äÇÑ »ýÁ¸ ¿ä¼ÒÀ̸ç, ƯÈ÷ ´Ü¹éÁú ¼·Ãë ±âÁØÀÇ ¸Ô°Å¸® Áß¿¡¼­´Â ¼ö»ê¹°ÀÌ ´Ù¸¥ ¸Ô°Å¸®º¸´Ùµµ ÈξÀ »ý»ê È¿À²¼ºÀÌ ¶Ù¾î³ª´Ù. 20¿© ³â°£ Çؾç¼ö»ê ÀÏÀ» Çϸ鼭, ´ëÇѹα¹¿¡¼­ ¾î·Á¿î ÀÏÁßÀÇ Çϳª°¡ ¼ö»ê ¾ç½Ä¾÷À̶ó´Â °ÍÀ» ÀÎÁöÇÏ¿´°í, ÀÌ·¸°Ô Áß¿äÇÑ ¸Ô°Å¸® ¼ö»ê¹° »ý»êÀÇ ¿ì¸® ¼¼´ë ¾î·Á¿ò°ú ¹®Á¦Á¡À» °è¼Ó Èļյ鿡 ³Ñ°Ü ÁÙ ¼ö´Â ¾ø´Ù´Â ´ÙÁüÀ» ¾ç½Ä ¾î¾÷Àεé°ú °°ÀÌ µÇ»õ±â¸é¼­, ÇöÀçÀÇ ¼ö»ê¾ç½Ä ÇöÀåÀÇ ¾Ö·ÎÁ¡À» ÇؼÒÇÏ´Â ¼ö»ê¾ç½Ä ÀÚµ¿È­¸¦ ½ÃÀÛÀ¸·Î Çϸ鼭 ´Ù¾çÇÑ ICT¸¦ À¶º¹ÇÕÇÏ¿© ÇູÇÑ ¼ö»ê¾ç½Ä ½Å»ê¾÷ÀÇ ±â¹ÝÀ» ¸¶·ÃÇÏ´Â ¿¬±¸¸¦ ÇÏ¿´´Ù. 
 
 ¼ö»ê¾ç½Ä ÇöÀåÀÇ ¾î¾÷Àεé°ú °°ÀÌ °øºÎÇÏ°í, ¾ç½ÄÇöÀåÀ» ã¾Æ°¡¼­ ¾ê±â ³ª´©¸é¼­ ÇöÀåÀÇ ¾Ö·Î»çÇ×°ú Èñ¸Á»çÇ×À» ÀÎÁöÇÑ °Í°ú 20¿© ³â°£ ¼öÇàÇÑ Çؾç¼ö»êÁ¤º¸È­¸¦ Åä´ë·Î ÇÏ¿©, ¾î¾÷ÇöÀå¿¡¼­ ½º¸¶Æ®Æù°ú À§¼º¿µ»óÁ¤º¸µîÀ» ÀÌ¿ëÇÏ¿© ½Ç½Ã°£ ¾ç¹æÇâÀ¸·Î ÇÊ¿äÁ¤º¸¸¦ ¹Þ°í ÁÖ´Â ½Ã½ºÅÛ, ±â°èÀåÄ¡¿Í ´Ù¾çÇÑ ICTÀ¶º¹ÇÕÀ» ÅëÇÑ À°»ó¾ç½ÄÀå¿ë »ç·áÀÚµ¿°ø±ÞÀåÄ¡ ¹× ½Ã½ºÅÛ ¹× »ç¹°ÀÎÅͳݱâ¼úÀ» ±â¹ÝÀ¸·Î ÇÑ ¾ç½ÄÀå °¡º¯Çü µ¥ÀÌÅÍ ÅëÇÕÀåÄ¡ ¹× ½Ã½ºÅÛÀÇ ¼¼ °¡Áö ICTÀ¶º¹ÇÕ ½Ã½ºÅÛ ¿¬±¸¸¦ ÇÏ¿´´Ù. 
 ±×°£ ´ëÇѹα¹ÀÇ ¼ö»ê ¾ç½Ä »ê¾÷Àº µ¿ÇØ, ³²ÇØ, ¼­ÇØÀÇ ÁÁÀº Áö¸®Àû, ÁöÇüÀûÀΠƯ¼º°ú ¼ö»ê¾ç½Ä ¾î¾÷ÀÎ, ¿¬±¸ÀÚ ¹× °ü·Ã ºÐ¾ß ¿©·¯ »ç¶÷µéÀÇ °¢°íÀÇ ³ë·ÂÀ¸·Î ¸¹ÀÌ ¹ßÀüÇØ ¿Ô´Ù. 50¿© °¡Áö ÀÌ»óÀÇ ´Ù¾çÇÑ ¾î·ù, Æзù, ÇØÁ¶·ù·ê ¾ç½ÄÇϸ鼭 ¿ì¸®³ª¶ó ¸Ô°Å¸®¿Í »ê¾÷¹ßÀü¿¡ Ä¿´Ù¶õ ¿ªÇÒÀ» ÇÏ°í ÀÖÀ½À» ÀÎÁ¤Çϸ鼭µµ ³ë¸£¿þÀÌ ¿¬¾îµî À¯·´ ¿©·¯ ³ª¶óµéÀÇ ¼ö»ê ¾ç½Ä »ê¾÷ÀÇ ¹ßÀü°ú ºñ±³Çϸ鼭 ¸¹Àº ¾Æ½¬¿òÀ» °®°í ÀÖ´Ù. 
 ÀÌ¹Ì ½ÃÀÛµÈ µ¥ÀÌÅͱâ¹Ý Áö´ÉÇü ½Ã´ë( ÀΰøÁö´É½Ã´ë, 4Â÷»ê¾÷Çõ¸í±â¼ú½Ã´ë), ±âÁ¸ ¿ì¸®³ª¶óÀÇ ¼ö»ê¾ç½Ä »ê¾÷ÀÇ ÀåÁ¡¿¡ ICT À¶º¹ÇÕÀ» ±â¹ÝÀ¸·Î ÇÑ Áö´ÉÇü ½Ã´ë¸¦ ¹Î°ü»êÇÐÀÌ ÁöÇý¸¦ ¸ð¾Æ¼­ ºü¸£°Ô ÁغñÇØ ³ª°£´Ù¸é, °¢°¢ÀÇ ¾îÁ¾, ±âÀÚÀç, ½Ã½ºÅÛ, ¿£Áö´Ï¾î¸µ ¹× Àü¹®°¡µî ģȯ°æ ½º¸¶Æ®¼ö»ê ¾ç½Ä°ü·Ã ¿©·¯ºÐ¾ß¿¡¼­ ±Û·Î¹ú Àü¹®±â¾÷µéÀÌ Åº»ýÇÒ °ÍÀÌ°í, Àü¼¼°èÀûÀ¸·Î ¿ì¸®¼¼´ë´Â ¹°·ÐÀÌ°í ¿ì¸®ÀÇ ´ÙÀ½ ¼¼´ë±îÁö Áö¼ÓÀûÀ¸·Î Æí¾ÈÇÏ°í ÇູÇÑ »ýÈ°À» ÇÒ °ÍÀÌ´Ù.

[±¹³»³í¹®]

The Economist was implied most of the major fisheries are procured by aquaculture in 2030 affected by the Aquaculture Revolution. William Hallal was also predicted that amount of aquatic products will be about 50% of the total fishery in 2015. Various organizations had been conducted various u-farm researches and demonstration projects due to changing environment. This study aims to propose an ICT-based technologies and policies for the ICT-based smart system by identifying results and problems.

[±¹³» ÇÐÀ§³í¹®]

In Korea, shellfish comprise 25% of the total national mariculture production. The Manila clam, found widely on the western and southern coasts of Korea, is the most representative of these shellfish and a major source of income for local fishermen. However, its production dropped abruptly from 83,842 tonnes in 1990 to 17,905 tonnes in 2009, and the reason for this decline is not yet fully understood. Manila clam culture depends on the natural environment of the intertidal zone, and maximal production of the clam is possible because its culture is based on its ecological characteristics. Therefore, a production system that does not consider the carrying capacity of the environment or include reasonable management of the farming area will produce a less than optimal harvest of clams. This study was carried out from 1999 to 2001 to better understand the carrying capacity of Gomso Bay for the Manila clam and to develop a technique for sustainable Manila clam culture in Gomso Bay, one of the most active marine farming areas in Korea. For this purpose, various environmental factors in Gomso Bay, such as water temperature and salinity, were investigated. The ecology of the clam larvae, spats, and adults in the farming area was studied with respect to the population structure of the clam. Finally, all research results were analyzed together to determine the cause of the mass mortality of this species in the autumn and the carrying capacity of Gomso Bay for the clam, and to develop and introduce an environmentally friendly management model for Manila clam culture in Gomso Bay. A brief summary of the research follows. 1. Investigation of Manila clam larvae D-Shaped shellfish larvae were observed in Gomso Bay throughout the year, except in February. The larvae appeared abundant near stations 3 and 4, and their density was highest in August, with 32,931 larvae/m3. The Manila clam larvae were distinguishable from the umboral stage, and their occurrence showed the same tendencies as the D-shaped larvae of the other shellfish. 2. Investigation of Manila clam spats The shell lengths of the spats observed during the study period varied from 0.41 to 2.01 mm. The mean size of the spats was lowest in June and highest in December. Although natural spats measuring < 2 mm in shell length were abundant, no spats > 3 mm were observed. In culture experiments using different densities of planted spats, lower growth and survival rates were observed in the higher-density cultures. The monthly stock densities of the clams in the farming area depended on the volumes of spats planted and harvested, but the density in October was always low. In terms of spat recruitment, spats < 2 mm formed naturally and were not recruited as farming stock. 3. Investigation of adult Manila clams and other macrobenthos Clams of 25£¿34 mm in shell length constituted 57% of the total population. The mean shell length of the clam increased from March to July, but decreased after August, with spat planting. The growth of the clam was fastest in spring and slowest in winter. The condition index of the clam increased from November to April and decreased from May to October. The monthly decrement in the condition index was highest between July and August, so the clam£¿s major spawning period extended from the end of July to the middle of August in Gomso Bay. The growth curve of the clam, analyzed using the Von Bertalanffy equation, was Lt=36.587(1£¿e£¿0.298(t£¿0.048)),and the maximum shell length and total weight of the clam were54.4mm and 36.7 g, respectively. The mortality rate of the clam was high in October and from January to February. The mass mortality that occurs in the autumn and winter was attributed to the clam£¿s physiologically weakened state after summer spawning, low levels of food organisms in the autumn, abnormally high water temperatures in October, and low winter temperatures. The natural and fishing mortalities (Z) of the clam during six months in the farming area in Gomso Bay were 0.42 and 1.51, respectively, and the harvesting rate for cultured clams was 78%. Examination of the stomach contents of the clams showed diatoms and dinoflagellates as their major food organisms. The amount of stomach contents in the clam was high in winter and spring, and low in summer and autumn. When the phytoplankton biomass was low in the water column, the mud content in the stomachs of the clams was greater. During the study period, 16 species of macrobenthos other than the Manila clam were observed in the farming area. They were predator species or competitive species of the clam, but their numbers were too low to affect the Manila clam population. 4. Development of a sustainable culture model For sustainable Manila clam culture to be established in Gomso Bay, management plans must fully accommodate the mechanisms underlying the clam£¿s mass mortality in autumn, as well as the carrying capacity of Gomso Bay for the clam. However, a successful sustainable culture model has not yet been developed because so many environmental factors affect the carrying capacity of an open mariculture system. Many complex factors stemming from tidal differences in the intertidal zone particularly affect the clam£¿s growth. Therefore, instead of an intricate model of the bay's carrying capacity, a simple model of the maximum sustainable yield that considers the population dynamics of the clam was used to analyze the potential for a sustainable Manila clam culture in Gomso Bay. This study suggests that a reasonable management strategy for cultured clams should be based on the results of mortality studies, sustainability studies, and other fundamental research into the clams in Gomso Bay. The annual maximum sustainable yield of clams, according to catch statistics, was calculated to be 24,467 tonnes across the 566 ha of licensed area in Gomso Bay. The data for spat planting indicated that 18 tonnes could be produced with 6.0 tonnes of planed spats per hectare. Therefore, the carrying capacity of Gomso Bay for the cultured Manila clam, analyzed with statistical data, is expected to be 19,000£¿24,000 tonnes. Two important factors must be considered in the development of a sustainable Manila clam culture in Gomso Bay. One is the need to reduce the mass mortality of the clam in autumn, and the other is the regulation of a licensed area, with a specific spat planting density to maintain the maximum carrying capacity. To increase clam production in Gomso Bay, natural spats should be protected and recruited to the farming area, and the sediment should be improved for spats and adult clams. Automatic harvesting machines should also be developed to reduce the harvesting costs in terms of labor costs.

[±¹³»³í¹®]

In the old Korean culture, there was a tradition to read a book as if you were singing. This way of reading is called ¡®Doksusung¡¯. Children used to read aloud in order to memorize the content when learning to read first. However, also, in the case of adults and cultivated scholars, they read aloud as if singing when reading the books written in Chinese characters. Also, reading Chinese poems, they read aloud, strengthening musicality more than reading prose. Influenced by this, the musicians from the old Korea developed Songseo, reading books as if singing, and Sichang, singing poems in a sophisticated manner as a part of performance repertoire, and they are being transmitted as a genre of Korean traditional music.Until now, a great deal of academic interests have been paid to Songseo and Sichang, a genre of Doksusung of professional musicians in Korean music academia. However, only a little research has been conducted on actual education field and Doksusung of scholars. The researcher recorded and studied Doksusung of several Chinese Classics scholars in the late 1990¡¯s, however, this study is limited to only a certain region. In 2000¡¯s, Namwon National Gugak Center has conducted a research on Doksusung of Chinese classics scholars in numerous regions over 3 years and released audio materials in Audio-CD with three volumes of report.Through examining the accumulated data sofar, a nationwide regional characteristics of Doksusung was found. Korean folksongs display strong regional features in their tonal system, it is worth examining if Doksusung has such regional features. Therefore, this article analyzed Doksusung sound materials reported in the academia so see if Doksusung has the regional features such as folk songs. Along with this, rhythm organization of Doksusung and scales were examined.As a result, although all Doksusung does not show musicality of particular regions, Chinese classic scholars do read books in the same way as a folksong in the particular region is sung. This result can be a foundation to discuss the future regionality of Doksusung. In addition, it has an important cultural value in the sense that Doksusung influenced the mind set of the ruling class, Yangban, in Joseon Dynasty through its musical function in education curriculum and reading life.

[±¹³»³í¹®]

This study is to examine the process in which environmental risks are socially constructed focusing on the case of white-leg shrimp-farming in Vietnam. The Vietnamese government has been struggling to promote economic development while at the same time effectively controlling the environmental risk that the economic development should involve. The Ministry of Natural Resources and Environment (MNRE) has emphasized the possible environmental threat of white-leg shrimps and banned the importation of them to protect the environment and the biological diversity. Consequently, white-leg shrimps were socially considered dangerous for environment. On the other hand, however, the Ministry of Agriculture and Rural Development (MARD) has facilitated the white-leg shrimp-farming as the market demand for white-leg shrimps and its economic value have increased throughout the world. The white-leg shrimp-farming has been considered critical to resolve the economic crisis of shrimp farmers.The clashes between MNRE and MARD surrounding the white-leg shrimp-farming were resolved in a conference in which they decided to exclude white-leg shrimps from the list of the introduced species that have been regarded to have a bad influence on the environment. This process of resolving the environmental risks suggests that risks are socially constructed and shifting with the change in its social-political context. Risks are politically and socially negotiated and resolved by the removal of the root cause.

[±¹³»³í¹®]

This study explored Transition Process of Composition Form of TV News focused on MBC Newsdesk between 1987 and 2007 through historical analysis.With theoretical background of preceding researches, compositon form are defined as composed by 'edit element' and 'format element', the oldest 761 news items of MBC newsdesk which can be reviewed at internet homepage were sampled with the interval of 5 years since 1987.The results of this study showed that the difference of 'entire time', 'shot time', 'graphic time' during the 5 development precedure was found to be statistically meaningful, however the difference of 'item time' statictically not supported.'Entire time' declined from 'public broadcasting era(1987)' to 'cable tv era(1997)', however it increased from 'cable tv era(1997)' to 'Satellite broadcasting era(2002)' and declined again to 'multimedia and multichannel era(2007)'.'shot time' and 'graphic time' increased from 'public broadcasting era(1987)' to 'cable tv era(1997)', however it decreased from 'cable tv era(1997)' to 'multimedia and multichannel era(2007)'

[±¹³» ÇÐÀ§³í¹®]

º» ¿¬±¸´Â ¸Å»ýÀÌ ¾ç½ÄÀÇ »ê¾÷È­¸¦ À§ÇÑ ÀÚ¿¬Ã¤¹¦¹æ¹ý °³¼±°ú Àΰø书 ¹æ¹ýÀÇ °³¹ß·Î ¸Å»ýÀÌ Ã¤¹¦ÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀÓÀ¸·Î½á ¾î¾÷ÀÎÀÇ ¼ÒµæÁõ´ë¿¡ ±â¿©ÇÏ°íÀÚ ÇÏ¿´´Ù. ƯÈ÷ ¸Å»ýÀÌÀÇ Ã¤¹¦ ¾ÈÁ¤¼ºÀ» ³ôÀÌ´Â Àΰø书¿¡ ´ëÇÑ ¿¬±¸¸¦ ÁýÁßÀûÀ¸·Î ´Ù·ç¾ú´Ù. ¸Å»ýÀÌÀÇ Ã¤¹¦´Â ÇöÀç±îÁö ÀÚ¿¬Ã¤¹¦¿¡ ÀÇÁ¸ÇØ ¿Ô´Âµ¥ º» ¿¬±¸¸¦ ÅëÇÏ¿© °á·ÐÀûÀ¸·Î Àΰø书¸¦ ¼º°øÇÏ¿´´Ù. ¸Å»ýÀÌ ¾÷ü¸¦ »ó¿ë ³ÃÀå°í¿¡ ³Ãµ¿º¸°üÇÏ¿© ÀÌ°ÍÀ» ÀÌ¿ëÇÑ À¯ÁÖÀÚÀÇ ½Ç³» ¹æÃâ ½ÇÇè °á°ú ¼ö¿ÂÀÌ 15¡É, 20¡É¿¡¼­ À¯ÁÖÀÚÀÇ ´ë·® ¹æÃâÀ» º» ¿¬±¸¿¡¼­ óÀ½À¸·Î È®ÀÎÇÏ¿´´Ù. ÀÌ·Î½á ´ë·®À¸·Î äÃëµÈ ¸Å»ýÀÌ ¾÷ü¸¦ »ó¿ë ³ÃÀå°í¿¡ º¸°üÇÏ¿© °èÀýÀÌ Áö³­ ÈÄ¿¡µµ ±× ¾÷ü¸¦ ¸Å»ýÀÌ Á¾¹¦(Seed)·Î »ç¿ëÇÒ ¼ö ÀÖÀ½À» È®ÀÎÇÏ¿´´Ù. »ó¿ë ³ÃÀå°í¿¡ ³Ãµ¿ º¸°üµÈ ¸Å»ýÀÌ ¾÷ü¸¦ »ç¿ëÇÏ¿© ÇöÀå¿¡¼­ À°»ó Àΰø书¸¦ ½Ç½ÃÇÑ °á°ú, ¸Å»ýÀÌ ¿±Ã¼¸¦ ÄÜÅ©¸®Æ®¼öÁ¶¿¡ Á¢Á¾(Seeding)ÇÑ ÈÄ 72½Ã°£¸¸¿¡ Çö¹Ì°æ 100¹èÀ²¿¡¼­ ¸¹Àº À¯ÁÖÀÚ¸¦ º¼ ¼ö ÀÖ¾ú°í, ¿©·¯ Á¾·ùÀÇ ºÎÂø ÀçÁú¿¡¼­ ±¸ÇüÀÇ ´Ü¼¼Æ÷°¡ ¹ß¾ÆµÇ´Â ¸ð½ÀÀÌ °üÂûµÇ¾ú´Ù. 书 6ÀÏ°¿¡´Â ´Ü¼¼Æ÷ÀÇ ¹ß¾Æü¿¡¼­ºÎÅÍ 8ºÐ¿­ Á÷¸³¹ß¾Æü±îÁö ¼ºÀåµÇ¾î °¡´Â °úÁ¤ÀÌ µ¿½Ã¿¡ È®ÀεÊÀ¸·Î½á À°»ó¿¡¼­µµ ¸Å»ýÀÌÀÇ ´ÜÀ§»ý½ÄÀ» ÀÌ¿ëÇÑ Àΰø书°¡ °¡´ÉÇÔÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. À°»ó¿¡¼­ Àΰø书µÈ ¸Å»ýÀÌ ¾¾¹ßÀ» ¹Ù´Ù¿¡¼­ ¾ç½Ä ½ÇÇè °á°ú ¸Å»ýÀÌ »ýÀ°»óÅ´ ¾ç¼º 4ÀÏ° Æò±Õ ¿±Àå 157¡à, 18ÀÏ°¿¡´Â Æò±Õ ¿±ÀåÀÌ 8,713¡à Å©±â·Î ¼ºÀåÇÏ¿´À¸¸ç ¾ç¼º 28ÀÏ°¿¡´Â Æò±Õ ¿±ÀåÀÌ 4.5§¯ Å©±â·Î ¼ºÀåÇÏ¿´´Ù. ÀÌ·Î½á ¸Å»ýÀÌ À°»ó Àΰø书 ¹× Ãʱ⠾缺 ½ÃÇèÀÌ ¼º°øµÇ¾úÀ½À» È®ÀÎÇÏ¿´À¸¸ç ¸Å»ýÀÌÀÇ ´ë·® ¾ç½ÄÀ» À§ÇÑ ¾ÈÁ¤Àû 书 ±â¼úÀ» È®¸³ÇÏ¿´´Ù.

[±¹³» ÇÐÀ§³í¹®]

Èò´Ù¸®»õ¿ìÀÇ ¼ºÀåÀº ¾ç½ÄÀåÀÇ ¼öÁúÀ» ÀÌ·ç´Â ¹°¸® È­ÇÐÀû ȯ°æÀΰú ¹ÐÁ¢ÇÑ °ü°è¸¦ °¡Áö°í ÀÖ´Ù(Zhang, 1985). ±×·¯³ª ¼ö°èÀÇ È¯°æÀ» ÀÌ·ç´Â ¹°¸®Àû, È­ÇÐÀû Ư¼ºÀÇ ¿ä¼ÒµéÀº ¸Å¿ì ¹æ´ëÇϸç(Sinderman, 1990), ȯ°æ°ú ¼ºÀå°úÀÇ ¿¬°ü¼ºÀ» °úÇÐÀûÀ¸·Î Ãß·Ð ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀº ÇÑÁ¤ÀûÀÌ´Ù. ±×·¯³ª ȯ°æ ¿ä¼Ò¸¦ ±¹³»¡¤¿ÜÀÇ ¹®ÇåÀ» Âü°í·Î Èò´Ù¸®»õ¿ì ¾ç½ÄÀåÀÇ È¯°æ¿ä¼Ò º¯È­¿Í ¼öȯ°æÀÇ º¯È­°¡ Èò´Ù¸®»õ¿ìÀÇ ¼ºÀå¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¿¬±¸ÇÏ´Â °ÍÀÌ º» ½ÇÇèÀÇ ¸ñÀûÀÌ´Ù. Èò´Ù¸®»õ¿ì ¾ç½ÄÀå ȯ°æ¿¡¼­ »çÀ° ¼ö¿ÂÀº »çÀ°ÇÏ´Â »ý¹°ÀÇ »ý¸® »óŸ¦ Á¿ìÇÏ´Â Áß¿äÇÑ È¯°æ¿äÀÎÁß ÇϳªÀ̸ç, ƯÈ÷ Èò´Ù¸®»õ¿ì´Â ¾Æ¿­´ë»êÀÇ Æ¯¼ºÀ¸·Î ÀÎÇØ 15¡­33 ¡ÉÀÇ ¼ö¿Â Á¶°Ç¿¡¼­ ¼­½ÄÀÌ °¡´ÉÇÏ´Ù. Èò´Ù¸®»õ¿ìÀÇ ¼ºÀå Àû¼ö¿ÂÀº 23¡­30 ¡É·Î¼­ ¾ç¼º ±â°£ Áß »çÀ° ¼ö¿Âº¯È­´Â 18.0¡­31.0 ¡ÉÀÇ º¯È­¸¦ º¸¿´À¸¸ç, Ãʱ⠻çÀ°½Ã±âÀÎ 5¡­6¿ùÀ» Á¦¿ÜÇÏ°ï 7¿ù ÀÌÈÄ¿¡´Â 26¡­30 ¡ÉÀÇ ¼ö¿Â ¹üÀ§¸¦ À¯ÁöÇÏ¿© Èò´Ù¸®»õ¿ìÀÇ ¼ºÀå¿¡ ¿µÇâÀÌ ¾ø¾ú´ø °ÍÀ¸·Î ÆǴܵȴÙ. ¾ç½Ä ±â°£ Áß ÃÖ´ë ¼ºÀå½ÃÀÇ Á¶»ç Ç׸ñº° °ªÀº ¼ö¿ÂÀº 27 ¡É¡¾1.8, ¿°ºÐÀº 22 ¢¶¡¾0.04, DO´Â 7.5 mg/L¡¾2.3, pH´Â 7.6¡¾0.4ÀÇ °ªÀ» ³ªÅ¸³»¾ú´Ù. ¾ç½Ä ±â°£ Áß ÃÖ¼Ò ¼ºÀå½ÃÀÇ Á¶»ç Ç׸ñº° °ªÀº ¼ö¿ÂÀº 26 ¡É¡¾0.3, ¿°ºÐÀº 19 ¢¶¡¾1.1, DO´Â 7.2 mg/L¡¾1.7, pH´Â 8.3¡¾0.2ÀÇ °ªÀ» ³ªÅ¸³»¾ú´Ù.

[±¹³» ÇÐÀ§³í¹®]

ÃÖ±Ù ³ªÅ¸³ª°í ÀÖ´Â ±âÈÄȯ°æ º¯È­ ¹®Á¦´Â Àü Áö±¸Â÷¿øÀÇ È¯°æ º¸Àü°ú ´Ü¼ø ÀçÇØ ´ëÀÀ Â÷¿øÀ» ³Ñ¾î ±¹°¡¿Í ¹ÎÁ·ÀÇ »ýÁ¸À» À§ÇùÇÏ°í ÀÖ´Ù. »ýÁ¸¿¡ ÇÊ¿äÇÑ ½Ä·® ¹× ¿¡³ÊÁö ÀÚ¿ø È®º¸´Â ±¹°¡ÀÇ ±âÈÄ ¾Èº¸ ¿µ¿ªÀ¸·Î È®´ëµÇ¾ú´Ù. ¶ÇÇÑ, ±âÈÄȯ°æ º¯È­·Î ÀÎÇÑ ÀüÁö±¸Àû ÀÚ¿ø ¼ö±Þ ºÒ±ÕÇüÀÌ ÁõÆøµÇ¾î ½Ä·® ÀÚ¿ø È®º¸¸¦ ¸ñÀûÀ¸·Î ÇÏ´Â Áö¿ªºÐÀï ¹× ±âÈij­¹Î ¹ß»ý °¡´É¼ºÀÌ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁú °ÍÀ¸·Î ÆǴܵȴÙ. µû¶ó¼­ °úÇÐÀûÀÎ ±âÃÊÀڷḦ ¹ÙÅÁÀ¸·Î ±âÈÄȯ°æ º¯È­¸¦ ÀÌÇØÇÏ°í, Ãë¾à¼ºÀ» ºÐ¼®ÇÑ ÈÄ ±âÈÄȯ°æ º¯È­ ÀûÀÀ±â¼úÀ» °³¹ßÇÏ¿© º¸±ÞÇÏ´Â ÀÏÀÌ ¹«¾ùº¸´Ù Áß¿äÇÏ°Ô ¿©°ÜÁö°í ÀÖ´Ù. ¿ì¸®³ª¶óÀÇ ¾ç½Ä¾÷Àº ±âÈÄȯ°æ º¯È­¿Í °°Àº Áö±¸±Ô¸ðÀÇ ÀÚ¿¬Çö»ó¿¡ ÀÇÇØ ¸¹Àº ¿µÇâÀ» ¹Þ°í ÀÖ´Ù. ±âÈÄȯ°æ º¯È­¿¡ ±âÀÎÇÑ ±Ø½ÉÇÑ ¿¬¾Èȯ°æ º¯µ¿Àº ¿ì¸®³ª¶ó ÁÖº¯ÀÇ ¼ö»êÀÚ¿ø ºÐÆ÷¸¦ º¯È­½Ãų »Ó¸¸ ¾Æ´Ï¶ó °æ¿ì¿¡ µû¶ó ¾ç½Ä»ý¹°ÀÇ ´ë·® Æó»ç¸¦ À¯¹ßÇÑ´Ù. ÀÌ¿Í ´õºÒ¾î °æÁ¦¹ßÀü¿¡ µû¸¥ ¼Òºñ¼ºÇâÀÇ °í±ÞÈ­·Î ¼ö»ê¹° ¼Òºñ´Â Áõ°¡µÇ°í ÀÖÀ¸³ª, ±âÈÄȯ°æ º¯È­·Î ÀÎÇÑ ¼ö»êÀÚ¿øÀÇ °í°¥°ú »ý»êºÎÁ·Àº ¼ö»ê¹°ÀÇ Áö¼ÓÀûÀÎ °¡°Ý»ó½ÂÀÎ fishflationÀ» ¾ß±âÇÏ´Â µî ½É°¢ÇÑ »çȸÀû ¹®Á¦·Î ´ëµÎµÇ°í ÀÖ´Ù. ÀÌ·¯ÇÑ fishflationÀÇ ÃËÁø¿¡´Â ±âÈÄȯ°æ º¯È­°¡ Å« ¿µÇâÀ» ³¢Ä¡´Âµ¥ ¿ì¸®³ª¶óÀÇ °æ¿ì Çظ¶´Ù ã¾Æ¿À´Â ÅÂdz, ³Ê¿ï¼ºÆĵµ, ÇØ¿ªÀÇ ¼ö¿Â»ó½Â µîÀÌ ÀÖ´Ù. ÀÌ·¯ÇÑ ¿¬¾È¼ö¸®¿¡ ´ëÇÑ ±íÀº ÀÌÇØ´Â ¾ÆÁ÷ ¿¬¾È¾ç½Ä¾÷°è¿¡±îÁö´Â È®´ëµÇÁö ¸øÇÑ µíÇÏ´Ù. °¡µÎ¸® ¾ç½ÄÀåÀº cage, feedingÀ» À§ÇÑ ÀÛ¾÷°ø°£, º¸Ç༺ È®º¸¸¦ À§ÇÑ cat walk, ºÎÇ¥, ballast, °è·ù»è, °è·ù½Ã½ºÅÛ µîÀ¸·Î ±¸¼ºµÈ´Ù. °¡µÎ¸® ¾ç½ÄÀåÀ» ±¸¼ºÇÏ´Â ¿©·¯ °¡Áö ºÎÀçÁß °¡Àå Å« ¿Ü·Â¿¡ ³ëÃâµÇ´Â °÷Àº cage·Î, cage¿¡ ÀÛ¿ëÇÏ´Â À¯Ã¼·ÂÀº fouling µîÀ¸·Î ÇÑ Ãþ µÎ²¨¿öÁø ¾î¸Á µÎ²²·Î ÀÎÇØ »ý¾ÖÁÖ±â Áß¿¡ °è¼Ó Áõ°¡Çϸç ÀÌ·¯ÇÑ Çö»óÀº ¼öÄ¡Çؼ®¿¡ ¾î·Á¿òÀ» °¡ÁßÇϸç, ÀÌ´Â °¡µÎ¸® ¾ç½ÄÀåÀÇ ³«ÈÄ·Î À̾îÁø °ÍÀ¸·Î º¸ÀδÙ. ¿ì¸®³ª¶ó °¡µÎ¸® ¾ç½ÄÀåÀÌ ±ØÈ÷ Ãë¾àÇÑ °ÍÀº ÇØ¿ªº° ´ëÇ¥ ÆĶû¿¡ ´ëÇؼ­ ¾ÈÁ¤¼ºÀ» ´ãº¸ÇÒ ¼ö ÀÖ´Â °è·ù½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ ¼³°è±âÁØ°ú À̸¦ ±¸ÇöÇÒ ¼ö ÀÖ´Â °è·ù½Ã½ºÅÛÀÌ ¾ÆÁ÷ °³¹ßµÇÁö ¸øÇÑ °Í¿¡ ±âÀÎÇÏ´Â °ÍÀ¸·Î ÆǴܵȴÙ. À̸¦ À§ÇØ º»°í¿¡¼­´Â Áö±¸ ¿Â³­È­·Î ÇѲ¯ °ÅÄ¥¾îÁø ÇØ¾ç ¼öȯ°æ¿¡¼­µµ ¾ÈÁ¤¼ºÀ» ´ãº¸ÇÒ ¼ö ÀÖ´Â ±âÁØÀ» Á¦½ÃÇÏ°í À̸¦ ±¸ÇöÇÒ ¼ö ÀÖ´Â °è·ù½Ã½ºÅÛÀ» °³¹ßÇÏ°íÀÚ ÇÑ´Ù.

[±¹³» ÇÐÀ§³í¹®]

º» ¿¬±¸¿¡¼­´Â Çؼö ¼øȯ¿©°ú ½Ã½ºÅÛ¿¡¼­ ¾ÈÁ¤ÀûÀÎ ¼öÁú À¯Áö¿Í ¼öó¸® ÀåÄ¡µéÀÇ Ã³¸® ºÎÇϸ¦ °¨¼Ò½ÃÅ°±â À§ÇØ ¿ÀÁ¸À» ¼øȯ¿©°ú ½Ã½ºÅÛ¿¡ ÁÖÀÔÇÏ°í, ¿ÀÁ¸ ÁÖÀÔ·®¿¡ µû¸¥ ¿ÀÁ¸, ÀÜ·ù»êÈ­¹°, »êȭȯ¿øÀüÀ§, Áú¼Ò¼º È­ÇÕ¹°(¾Ï¸ð´Ï¾Æ, ¾ÆÁú»ê, Áú»ê Áú¼Ò), °íÇü¹°(ºÎÀ¯°íÇü¹°, Èֹ߼º ºÎÀ¯°íÇü¹°, ¿ëÁ¸À¯±âź¼Ò), Źµµ, »öµµ µîÀÇ ¼øȯ¿©°ú ½Ã½ºÅÛ¿¡¼­ Áß¿äÇÑ ¼öÁú ¿äÀεéÀ» Àå±â°£ ¸ð´ÏÅ͸µ Çϸ鼭 ¿ÀÁ¸ÀÌ ¼öÁú¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ¿´´Ù. ¶ÇÇÑ ¼øȯ¿©°ú ½Ã½ºÅÛ ³» °¨¼ºµ¼ À°¼º¾î¸¦ »çÀ°Çϸ鼭 °¨¼ºµ¼ÀÇ ¼ºÀå È¿À²°ú Ç÷¾×ÀÇ º¯È­¸¦ Á¶»çÇÏ¿´´Ù. ÃÑ ¼ö·® ¾à 4,500 LÀÇ µ¿ÀÏÇÑ ±Ô°Ý°ú ¹èÄ¡¸¦ °¡Áø µ¶¸³µÈ 3°³ÀÇ ¼øȯ¿©°ú »çÀ° ½Ã½ºÅÛÀ» ¼³Ä¡ÇÏ°í, ¼ö¿ÂÀ» 22.5¢¦23¡É·Î À¯ÁöÇϸ鼭 Æò±Õ üÁß 334.5 g (¾à 57 kg/system ¼ö¿ë)ÀÇ °¨¼ºµ¼À» 44ÀÏ°£ »çÀ°ÇÏ¿´´Ù. ´ëÁ¶±¸ ½Ã½ºÅÛ¿¡´Â ¿ÀÁ¸À» ÁÖÀÔÇÏÁö ¾Ê¾ÒÀ¸¸ç, ½ÇÇ豸°ú 1°ú 2¿¡´Â °¢°¢ 20 g O©ý/kg feed¡¤day°ú 40 g O©ý/kg feed¡¤dayÀÇ ºñÀ²·Î ¿ÀÁ¸À» ÁÖÀÔÇÏ¿´´Ù. 44ÀÏ°£ »çÀ°Çϸ鼭 »çÀ°¼ö ÁßÀÇ ¿ÀÁ¸, ÃÑÀÜ·ù»êÈ­¹° ¾Ï¸ð´Ï¾Æ, ¾ÆÁú»ê Áú¼Ò, Áú»êÁú¼Ò, ºÎÀ¯°íÇü¹°, Èֹ߼º ºÎÀ¯°íÇü¹°, ¿ëÁ¸À¯±âź¼Ò ³óµµ¿Í Źµµ, »öµµ¸¦ ÃøÁ¤ÇÏ¿© ¼øȯ¿©°ú ½Ã½ºÅÛ ³» ¿ÀÁ¸ ÁÖÀÔ¿¡ µû¸¥ ¼öÁú º¯È­¸¦ ¸ð´ÏÅ͸µÇÏ¿´´Ù. ½ÇÇè Á¾·á ½Ã¿¡´Â °¨¼ºµ¼ÀÇ ¼ºÀå°ú Ç÷¾×ÀÇ º¯È­¸¦ Æò°¡Ç׿´´Ù. ½ÇÇ豸 1°ú ½ÇÇ豸 2ÀÇ ¿ÀÁ¸ ³óµµ´Â °¢°¢ Æò±Õ 0.01¡¾0.01 mg/L¿Í 0.00¡¾0.00 mg/L·Î ½Ã°£ °æ°ú¿Í ¿ÀÁ¸ ÁÖÀÔ·®¿¡ µû¶ó À¯ÀÇÇÏ°Ô Â÷ÀÌ°¡ ¾øÀÌ ¸Å¿ì ³·°Ô À¯ÁöµÇ¾ú´Ù. ÃÑÀÜ·ù»êÈ­¹°ÀÇ ³óµµ´Â ½ÇÇ豸 1°ú ½ÇÇ豸 2¿¡¼­ °¢°¢ Æò±Õ 0.12¡¾0.01 mg/L¿Í 0.22¡¾0.03 mg/L·Î ³ªÅ¸³ª, ¿ÀÁ¸ ÁÖÀÔ·®ÀÌ ´õ ¸¹¾Ò´ø ½ÇÇ豸 2ÀÇ ÃÑÀÜ·ù»êÈ­¹° ³óµµ°¡ À¯ÀÇÇÏ°Ô ³ô°Ô À¯ÁöµÇ¾ú´Ù. ½ÇÇ豸 1ÀÇ ºÎÀ¯°íÇü¹° ³óµµ´Â ´ëÁ¶±¸¿¡ ºñÇØ ¾à 42.6% °¨¼ÒÇÏ¿´À¸¸ç, ¿ÀÁ¸ ÁÖÀÔ·®ÀÌ ´õ ¸¹¾Ò´ø ½ÇÇ豸 2ÀÇ ³óµµ´Â ¾à 50.9% °¨¼ÒÇÏ¿´´Ù. ¶ÇÇÑ »çÀ°Á¶ ³» ¿ëÁ¸À¯±âź¼ÒÀÇ °æ¿ìµµ ½ÇÇ豸 1°ú 2¿¡¼­ °¢°¢ 29.3%¿Í 30.6%ÀÇ ³óµµ °¨¼ÒÀ²À» º¸¿© ¿ÀÁ¸ ÁÖÀÔÇϸ鼭 »çÀ°Á¶ ³» °íÇü¹°°ú À¯±âź¼ÒÀÇ ³óµµ¸¦ Å©°Ô °¨¼Ò½Ãų ¼ö ÀÖ¾ú´Ù. ¾Ï¸ð´Ï¾Æ Áú¼Ò ³óµµ´Â ½ÇÇ豸 1¿¡¼­ ´ëÁ¶±¸¿¡ ºñÇØ ¾à 13.8% °¨¼ÒµÇ¾úÀ¸³ª ½ÇÇ豸 2¿¡¼­ ¾Ï¸ð´Ï¾Æ Áú¼Ò ³óµµ´Â ´ëÁ¶±¸ ³óµµ¿Í Â÷ÀÌ°¡ ¾ø¾ú´Ù. ¾ÆÁú»ê Áú¼ÒÀÇ °æ¿ìµµ, ½ÇÇ豸 1¿¡¼­ ´ëÁ¶±¸¿¡ ºñÇØ ¾à 28.6%ÀÇ ³ôÀº °³¼± È¿°ú¸¦ ³ªÅ¸³½ ¹Ý¸é, ½ÇÇ豸 2¿¡¼­´Â 16.7%·Î ½ÇÇ豸 1¿¡ ºñÇØ °³¼± È¿°ú°¡ ³·¾Æ, »ý¹°ÇÐÀû ¿©°úÁ¶ÀÇ Áú»êÈ­ ¼º´ÉÀÌ °ú·®ÀÇ ¿ÀÁ¸ ÁÖÀÔ¿¡ µû¶ó ´Ù¼Ò ÀúÇØµÈ °ÍÀ¸·Î »ý°¢µÈ´Ù. ¿ÀÁ¸ ÁÖÀÔ·®ÀÌ Áõ°¡Çϸ鼭 ŹµµÀÇ Æò±Õ ³óµµ´Â ´ëüÀûÀ¸·Î °¨¼ÒÇÏ´Â °æÇâÀ̾úÀ¸¸ç, ½ÇÇ豸 1°ú ½ÇÇ豸 2¿¡¼­ Źµµ´Â °¢°¢ 33.3%¿Í 44.0% °¨¼ÒÇÏ¿© ¿ÀÁ¸ÀÇ ÁÖÀÔ·®ÀÌ Áõ°¡Çϸ鼭 °¨¼ÒÀ²ÀÌ Áõ°¡ÇÏ¿´´Ù. °Ñº¸±â »öµµ¿Í ÁøÁ¤ »öµµ ¸ðµÎ ¿ÀÁ¸À» ÁÖÀÔÇϸ鼭 ÁÖÀÔÇÏÁö ¾ÊÀº ´ëÁ¶±¸¿¡ ºñÇØ ¸íÈ®ÇÑ °³¼± È¿°ú°¡ ³ªÅ¸³µ´Ù. ½ÇÇ豸 1°ú ½ÇÇ豸 2¿¡¼­ °Ñº¸±â »öµµ´Â ´ëÁ¶±¸¿¡ ºñÇØ 70.6%¿Í 72.7% °¨¼ÒÇÏ¿©, °¨¼ÒÀ²ÀÌ ¸Å¿ì ³ô¾Ò´Ù. ÁøÁ¤ »öµµ ¿ª½Ã °¢°¢ 71.4%¿Í 83.1% °¨¼ÒÇÏ¿´À¸¸ç, °Ñº¸±â »öµµº¸´Ù °¨¼ÒÀ²ÀÌ ´õ ³ô¾Ò´Ù. °¨¼ºµ¼ÀÇ »ç·á°è¼ö´Â ´ëÁ¶±¸¿Í ½ÇÇ豸 °£¿¡ À¯ÀÇÇÏ°Ô Â÷ÀÌ°¡ ¾ø¾úÀ¸¸ç, 2.97¢¦3.19ÀÇ ¹üÀ§¸¦ ³ªÅ¸³»¾ú´Ù. °¨¼ºµ¼ÀÇ Ç츶ÅäÅ©¸®Æ®, GOP, GPT, ±Û·çÄÚ½º, ÄÚƼÁ¹Àº ¿ÀÁ¸ ÁÖÀÔ·®ÀÌ Áõ°¡Çϸ鼭 ´ëüÀûÀ¸·Î Áõ°¡ÇÏ´Â °æÇâÀ̾úÀ¸³ª ´ëÁ¶±¸¿Í ½ÇÇ豸 °£¿¡ À¯ÀÇÇÏ°Ô Â÷ÀÌ°¡ ¾ø¾úÀ¸¸ç »ýÁ¸À² ¿ª½Ã ¸ðµç ´ëÁ¶±¸¿Í ½ÇÇ豸¿¡¼­ 98.3¢¦99.2%ÀÇ ¹üÀ§¸¦ ³ªÅ¸³»¾î ¸Å¿ì ³ô¾Ò´Ù. ÀÌ»óÀÇ °á°ú·Î º¸¸é, ¼öÁßÀÇ À¯±â¹°°ú Źµµ ¹× »öµµÀÇ Ãø¸é¿¡¼­´Â ¿ÀÁ¸ ÁÖÀÔ·®ÀÇ Áõ°¡¿¡ µû¶ó °¢ ¼öÁú ¿äÀÎÀÇ °¨¼ÒÈ¿°ú°¡ ¶Ù¾î³µ´Ù. ±×·¯³ª 40 g O©ý/kg feed?dayÀÇ ºñÀ²·Î ¿ÀÁ¸À» ÁÖÀÔÇÑ ½ÇÇ豸¿¡¼­ ¾Ï¸ð´Ï¾Æ¿Í ¾ÆÁú»ê Áú¼ÒÀÇ ³óµµÀÇ °¨¼ÒÀ²ÀÌ 20 g O©ý/kg feed¡¤dayÀÇ ºñÀ²·Î ¿ÀÁ¸À» ÁÖÀÔÇÑ ½ÇÇ豸 º¸´Ù ³·¾Ò°í »ý¹°ÇÐÀû ¿©°úÁ¶ÀÇ ±â´ÉÀÌ ´Ù¼Ò ÀúÇÏµÈ °ÍÀ¸·Î ÆǴܵǾú´Ù. ¶ÇÇÑ °¨¼ºµ¼ÀÇ ¼ºÀå°ú Ç÷¾×¿¡ ¿ÀÁ¸ÀÌ ¹ÌÄ¡´Â ¿µÇâÀÇ Â÷ÀÌ°¡ À¯ÀÇÇÏ°Ô ³ªÅ¸³ªÁö ¾Ê¾ÒÁö¸¸, ¿ÀÁ¸ÀÇ ÁÖÀÔ·®ÀÌ Áõ°¡Çϸ鼭 ´Ù¼Ò Áõ°¡ÇÏ´Â °æÇâÀ» º¸ÀÎ ¹Ù Àå±â°£ »çÀ° ½Ã¿¡´Â ÀúÇØ ÀÛ¿ëÀÌ ÀÏ¾î ³¯ °¡´É¼ºÀ» ¹èÁ¦ÇÒ ¼ö ¾ø¾ú´Ù. µû¶ó¼­ ¼öÁú °³¼±ÀÇ Ãø¸é°ú »çÀ° »ý¹°ÀÇ ¾ÈÀüÀ» À§Çؼ­´Â 20 g O©ý/kg feed¡¤day ÀÌ»ó ¿ÀÁ¸À» ÁÖÀÔÇÏÁö ¾Ê´Â °ÍÀÌ ¹Ù¶÷Á÷ ÇÒ °ÍÀ¸·Î ÆǴܵǾú´Ù.

[±¹³»³í¹®]

Recent adverse changes in global climate are directly threatening humanity's own survival and are beyond the straightforward environmental conservation issues and post disaster relief efforts. Ensuring the steady supplies of food and energy resources for survival are becoming national security concerns around the globe as the imbalance of food supply and demand worsens. These asymmetries likely will result in intensification of the regional geopolitical conflicts and refugees resulting from the climate changes. Therefore, technology developments with emphasis on accumulation and analysis of climatic change data are needed to adapt to sudden shift in regional environment. Subsequent dissemination of adaptive technology is also required. Geographically, our nation is surrounded by the three seas, and the major supply of animal protein is via sea foods. With focuses on this vitally important aquatic protein resources, this study aims to improve on sustainable aquaculture facility, especially with climate changes leading to recent trends of depletion and underproduction of fishery resources and to reduce sea pollution while achieving its goals. To advance sustainable cage aquaculture technology, steadfast systemic analysis of current state of aquaculture and its challenges needs to be reviewed and with these data, development of efficient and environment friendly aquaculture is possible. The durability of cage frame which is the core of the cage aquaculture can be maximized by systematic approach to material engineering and design improvement. Furthermore, environmental consequences of buoy component of the cage can be minimized by applications of new advanced materials. The establishment of eco-friendly fisheries can contribute to reliable and sustained productions of food and provide basis for establishment of competitive aquafarming system and high profit production system. Even though results of this research are incomplete, it does provide a direction for eco-friendly adaptive design technology in the fishery equipment industry. In near future, we hope to see the fishery industry achieve the full potential of becoming highly profitable business venture with incorporation of improvements in technological design.

[±¹³»³í¹®]

The global climate change, mainly due to emissions of greenhouse gases from fossil fuel use and forest destruction, may become one of the most serious environmental problems.The impacts of a rapid climate change have been discussed by researchers who are physical, biological, environmental scientists, and economists for over the decades.Especially, the carbon dioxide released by humans into the atmosphere dissolves into oceans.In this paper, we measured both economic valuation and optimal production scale per hectare for grow-out phase production of the tidal flat oyster industry, considering ocean acidification. Increased ocean acidification by climate change had a bad influence for oyster production and economic feasibility in each scenario. In the case of production units, the total output of oyster decreased.Cost-benefit analysis used to indicate the effects of economic valuation. The fundamental role of Cost-benefit analysis is to establish principles by which the costs and benefits of any public project are measured. Using discounting rates 5.5%, the model compared profit that occur at different times from 2012 to 2100.This study also estimated various sub-models, which are Benefit Cost Ratio(BCR), Net Present Value(NPV), Incremental Benefit Cost Ratio(IBCR) to compare profit of grow-outphase and analyzed returns to evaluate the scenarios. The results suggest as follows. First, all of scenario analysis with sub-models were economically feasible. Second, scenario 2 which is the oyster spat to the shell height of less than 3cm in 5cm was more profit than the scenario 1(less than 1cm in 3cm) and 3(5-7cm). It is the optimal production scale of aquaculture industry. Third, the elevated ocean acidification by climate change had a bad influence for oyster production and economic feasibility. To summarise, the economic effect per hectare of ocean acidification did the damage to the economic loss from 0.97billion won to 1.23billion won.If we can collect more biological and environmental data on climate change impacts for oyster, we can expect that this research will be helpful for future investigation of the economic valuation dynamics in Korea.

[±¹³» ÇÐÀ§³í¹®]

º» ¿¬±¸´Â °í¹Ðµµ ¾ç½Ä ¹ìÀå¾î¸¦ ´ë»óÀ¸·Î DOº¯È­¿¡ µû¸¥ »ýÁ¸À², ¼öÁúº¯È­¸¦ Á¶»çÇÏ¿© »ó°ü°ü°è¸¦ ±¸¸íÇÏ°íÀÚ ½Ç½ÃµÇ¾ú´Ù. &#xD; ¾ç½Ä ¹ìÀå¾îÀÇ ½ÇÇ豸¿¡¼­ »çÀ°¼ö ³»ÀÇ DOÀÇ °¨¼Ò¿Í »ýÁ¸À²Àº ¾îüÀÇ Å©±â°¡ Ŭ¼ö·Ï ªÀº ½Ã°£ ¾È¿¡ ³ªÅ¸³µÀ¸¸ç, 150gÀº ½ÇÇè °³½Ã ÈÄ 6½Ã°£, 15g°ú 50gÀº ½ÇÇè °³½Ã ÈÄ 9½Ã°£ ¸¸¿¡ Àü·® Æó»çÇÏ¿´°í, DO°¡ °¨¼ÒÇϸ鼭 NO2-N, NO3-N, NH4-N µîÀÌ ´ëÁ¶±¸¿¡ ºñÇØ À¯ÀÇÀûÀ¸·Î ³ôÀº ¼öÄ¡¸¦ ³ªÅ¸³»¾ú´Ù. &#xD; »çÀ°¼ö ³»ÀÇ DO°¡ °¨¼ÒÇÔ¿¡ µû¶ó »ê¼Ò¿î¹Ý±â´ÉÀ» ÇÏ´Â Ht¿Í Hb°¡ Áõ°¡µÇ¾úÀ¸¸ç, Ht´Â ´ëÁ¶±¸¿¡ ºñÇؼ­ Æò±Õ 31¡¾1.41, Hb´Â Æò±Õ 4.63¡¾0.46g/dl Áõ°¡ÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ¶ÇÇÑ, ½ºÆ®·¹½º¸¦ ÆÇ´ÜÇÏ´Â 1Â÷ ÁöÇ¥¹°ÁúÀÎ CortisolÀÌ ´ëÁ¶±¸¿¡ ºñÇØ Æò±Õ 1.7¡¾0.37ug/dL Áõ°¡ÇÏ¿´°í, Cortisol Áõ°¡ÇÔ¿¡ µû¶ó 2Â÷ ½ºÆ®·¹½º ÁöÇ¥¹°ÁúÀÎ Glucose ¶ÇÇÑ ´ëÁ¶±¸¿¡ ºñÇØ Æò±Õ 52.15¡¾9.76mg/dL Áõ°¡ÇÏ¿´À¸¸ç, À̸¦ ÅëÇØ DO°¨¼Ò·Î ÀÎÇÏ¿© ¹ìÀå¾î°¡ ½ºÆ®·¹½º¸¦ ¹ÞÀº °ÍÀ¸·Î ÆǴܵȴÙ.&#xD; º» ¿¬±¸ °á°ú, °í¹Ðµµ ¹ìÀå¾î ¾ç½Ä¿¡¼­ DOº¯È­´Â »ýÁ¸À² ¹× ¼öÁúº¯È­¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ¸·Î ÆǴܵǸç, ÀÎÀ§Àû »ê¼Ò°ø±ÞÀÌ Â÷´ÜµÇ¾úÀ» ¶§, Â÷´Ü ÈÄ 1~2½Ã°£ À̳»¿¡ 4mg/L ¼öÁØ ÀÌ»óÀ¸·Î À¯ÁöµÉ ¼ö ÀÖµµ·Ï Ãß°¡ÀûÀÎ »ê¼Ò°ø±ÞÀ» ½Ç½ÃÇÏ´Â °ÍÀÌ DOÀÇ °¨¼Ò·Î ÀÎÇÑ ÇÇÇظ¦ ÃÖ¼ÒÈ­ ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ÆǴܵȴÙ.&#xD; &#xD;This research was started for defining its correlation by investigating&#xD; high-density Anguilla japonica with survival rate in accord with DO&#xD; change and water change.&#xD; In experimental of high-densit Anguilla japonica, decrease of DO and&#xD; survival rate in rearing was shown up in a short time as a size of fish&#xD; body was bigger. After starting experiment, 50g died after 6 hours, 15g&#xD; and 50g died after 9 hours. As rate of DO decreasing, NO2-N, NO3-N,&#xD; NH4-N shew significantly higher levels than control&#xD; As rate of DO in the water decreasing, Ht and Hb, which has a delivery&#xD; function of oxygen, were increased, and Ht turned out to be increased&#xD; more than control about 31¡¾1.41 in average, and Hb was also increased&#xD; about 4.63¡¾0.46g/dl in average. Futhermore, Cortisol, which is a indicator&#xD; substance judging stress, was increased 1.7¡¾0.37ug/dL more than control&#xD; in average, As Cortisol increasing, Glucose, the 2nd indicator substance&#xD; judging stress, was increased 52.15¡¾9.76mg/dL more than ´ëÁ¶±¸ in&#xD; average rate. Through this experiment, we can see Japanese eel got&#xD; stress by reduction of DO.&#xD; As a Conclusion of this experiment, At the high-densit Anguilla&#xD; japonica, it was judged the variation of DO effects on survival rate and&#xD; change of water on a large scale. And when artificial supply of oxygen&#xD; was shut off, It turns out that keeping oxygen about more than 4mg/L&#xD; within 1~2 hour by starting additional oxygen supply would be helpful for&#xD; reducing damage of DO decre

[±¹³» ÇÐÀ§³í¹®]

ħü±â¿¡ µé¾î¼± ¾ç½Ä »ê¾÷ÀÇ ¹ßÀüÀ» À§ÇÑ ½Å Ç°Á¾ÀÇ ¾ç½Ä ´ë»óÁ¾À¸·ÎÀÇ °³¹ß°ú ÇÔ²² ¿¬¾È »ýÅ°è ȯ°æ °³¼±¿¡ µµ¿òÀÌ µÇ´Â Çѱ¹»ê °¹Áö··ÀÌ·ù Áß »ê¾÷ÀûÀ¸·Î °¡Ä¡°¡ ³ôÀº ¹ÙÀ§Åа¹Áö··ÀÌÀÇ ¾ç½Ä ±â¼ú °³¹ßÀ» À§ÇÑ ±âÃÊÀڷḦ È®º¸Çϱâ À§ÇÏ¿©, ¹ÙÀ§Åа¹Áö··ÀÌÀÇ À°»ó ¼öÁ¶³» ¾Ë¸ÂÀº Ä¡ÃæÀÇ »çÀ°±âÁúÀ» ¾Ë¾Æº¸°í, ¹ÙÀ§Åа¹Áö··ÀÌ À¯»ýÀÇ ÃÊ±â ¹ß´Þ ´Ü°èº° Ư¡À» °üÂûÇÏ¿© ¾Ë¸ÂÀº ±ÞÀÌ ½Ã±â¸¦ Á¶»çÇÑ °á°ú¸¦ ¿ä¾àÇÏ¸é ´ÙÀ½°ú °°´Ù. 2010³â 6¿ù ºÎ°æ´ëÇб³ ¼ö»ê°úÇбâ¼ú¼¾ÅÍ¿¡¼­ Àΰø Á¾¹¦ »ý»êÇÑ ¹ÙÀ§Åа¹Áö··ÀÌ À¯»ýÀº 20¡É Àü, ÈÄÀÇ ¼ö¿Â¿¡¼­ ¾î¹ÌÀÇ ¼­½Ä°ø¿¡¼­ ºÐÃâµÇ¾úÀ¸¸ç, ¼¼°¡´ÚÀÇ chaete·Î ÀÌ·ç¾îÁø ù ¹ø° ´Ù¸®(1st. para.)¸¦ °¡Áö´Â Èı⠴ã·ûÀÚ(metatrocophore) ½Ã±âÀÇ À¯»ýÀ¸·Î ³­È²°ú ¼¶¸ð¸¦ °¡Áö°í ÀÖ´Ù. ¹æÃâµÈ À¯»ýÀº 2~3ÀÏ°£ ÂøÀú¿Í À¯¿µÀ» ¹Ýº¹ÇÏ¿´´Ù. À̶§ Á¡Â÷ ³­È²ÀÌ »ç¶óÁö°í Ÿ¿øÇüÀÇ ¸ö ÇüÅ°¡ üÆøÀÌ Á¡Á¡ ÁÙ¾îµé°í üÀåÀÌ ±æ¾îÁö¸é¼­ Á¡Á¡ Ä¡ÃæÀÇ ¸ð½ÀÀ¸·Î º¯È­Çϱ⠽ÃÀÛÇß´Ù. 3¹ø° ´Ù¸®(3rd. para.)¸¦ °¡Áö¸ç nectochaete±â·Î Á¢¾îµç À¯»ýÀº üÀåÀÌ 450~500 ¥ìm À̸ç, üÆøÀº ¾à 110 ¥ìm¿´´Ù. ¼¶¸ð°¡ »ç¶óÁø Ç×¹® ±Ùó¿¡´Â Ç×¹® Ã˼ö°¡ º¸À̱⠽ÃÀÛÇÏ¿´´Ù. ÀÌÈÄ Ç×¹® Ã˼ö´Â üÀåÀÇ ¼ºÀå°ú ÇÔ²² ±æ¾îÁ³´Ù. ÀÌ ½Ã±â¿¡ ¿ÏÀüÇÑ ÂøÀú¸¦ ½ÃÀÛÇÏ¿´´Ù. À¯»ý ¹æÃâ 3~4ÀÏ ÈÄ È帴ÇÏ°Ô º¸ÀÌ´ø Àεα¸¿ªÀÇ ¾ÇÄ¡°¡ Á¡Á¡ ¶Ñ·ÇÇÏ°Ô º¸À̱⠽ÃÀÛÇßÀ¸¸ç, ÀåÀÇ Çü¼º ¶ÇÇÑ ½ÃÀÛ µÇ¾ú´Ù. ¶ÇÇÑ ´Ù¸®ÀÇ chaete¸¦ µÑ·¯½Ñ ÃøÁ·(parapodia)ÀÌ ³ªÅ¸³µ´Ù. ºÐÃâ 5~6ÀÏ ÈÄ 4½ÖÀÇ chaetiger¸¦ ÀÌ·ç¸ç ¾à 11 ¥ìm ±æÀÌÀÇ »ó, ÇϾÇÀÌ Çü¼ºµÇ¾ú°í, 7ÀÏÀÌ °æ°úÇϸ鼭 ÀåÀÇ Çü¼ºÀÌ ¶Ñ·ÇÇØÁö°í, ¾ÇÄ¡ÀÇ »ó, ÇϾÇÀÇ ¿îµ¿ÀÌ È®½ÇÇØ Áö¸é¼­ ¸ÔÀÌ ¼·À̸¦ ½ÃÀÛÇß´Ù. À¯»ýÀº ºÐÃâ 5ÀÏ °æºÎÅÍ À¯»ýÀÇ ¸ö¿¡¼­ ºÐºñµÇ±â ½ÃÀÛÇÑ Á¡¾×ÁúÀ» ÀÌ¿ëÇÏ¿© ÁÖº¯ÀÇ À¯±â¹°À» ÀÌ¿ëÇØ tube ÇüÅÂÀÇ ¼­½ÄÁö¸¦ ¸¸µé±â ½ÃÀÛÇÏ¿´À¸¸ç, ÀÌ ÈÄ ¸ö Àüü¸¦ ¸ðµÎ µÑ·¯½Ñ ¡®¤Ñ¡¯, ¡®¤µ¡¯ ÇüÅÂÀÇ tube¸¦ ¸¸µé¾ú´Ù. À¯»ýÀº ¸¸µé¾îÁø tube ÇüÀÇ ¼­½ÄÁö¿¡¼­ ´ëºÎºÐ ÀºµÐ »ýÈ°À» ÇÏ¿´À¸¸ç, ±ÞÀÌ È°µ¿À» À§Çؼ­ Àü, ÈÄ ¿îµ¿À» ÅëÇØ ¼­½ÄÁö ¾È, ¹ÛÀ» À̵¿ÇÏ¿´´Ù. ÀÌÈÄ ½Ã°£ÀÇ °æ°ú¿¡ µû¶ó üÀý°ú üÀåÀÌ ´Ã¾î³µÀ¸¸ç, ºÐÃâ 15ÀÏ ÈÄ Ã³À½ ºÐÃ⠽úÎÅÍ °¡Áö°í ÀÖ´ø ¾ÈÁ¡°ú ÇÔ²² ÁøÂ¥ ´«ÀÌ ÃâÇöÇß´Ù. ±âÁúº° Ä¡ÃæÀÇ ¼ºÀå·üÀ» È®ÀÎÇÑ °á°ú ±¼ Æа¢¸¸À» ÀÌ¿ëÇÑ ±¸°£¿¡¼­ óÀ½ ½ÇÇè ½ÃÀ۽à º¸´Ù 44.3%·Î ¼ºÀåÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸¿´°í, ´ÙÀ½À¸·Î ±¼ Æа¢°ú ¸¶»çÅ並 1:1·Î È¥ÇÕÇÑ ±¸°£, ±¼ Æа¢°ú ¸ð·¡¸¦ 1:1·Î È¥ÇÕÇÑ ±¸°£ ±¼ Æа¢, ¸ð·¡, ¸¶»çÅ並 °¢°¢ 1:1:1·Î ¹èÇÕÇÑ ±¸°£ ¼øÀ¸·Î ³ôÀº ¼ºÀå·üÀ» º¸¿´À¸¸ç, ÀÔÀÚ Å©±â 500 ¥ìm ÀÌÇÏÀÇ ½ÃÆÇ¿ë ¸ð·¡¸¦ ´Üµ¶À¸·Î ÀÌ¿ëÇÑ ±¸°£¿¡¼­ 14.0%ÀÇ ¼ºÀå·üÀ» º¸¿© °¡Àå ³·°Ô ³ªÅ¸³µ´Ù. Ä¡ÃæÀÇ »çÀ°±âÁú¿¡ ÀÖ¾î ±¼ Æа¢ÀÇ »ç¿ë ºñÀ²¿¡ µû¸¥ Ä¡ÃæÀÇ ¼ºÀå·üÀ» È®ÀÎÇÑ °á°ú ´ëüÀûÀ¸·Î ±¼ Æа¢ÀÇ »ç¿ë ºñÀ²ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Ä¡ÃæÀÇ ¼ºÀå·üµµ ÇÔ²² Áõ°¡ÇÏ´Â °æÇâÀ» º¸¿´´Ù. ±¼ Æа¢À» 20%¸¦ »ç¿ëÇÑ ±¸°£¿¡¼­ 16.6%ÀÇ ¼ºÀåÀ» º¸¿© °¡Àå ³·Àº ¼ºÀå·üÀ» ³ªÅ¸³»¾ú´Ù. »çÀ°±âÁúº° »çÀ° ÇؼöÀÇ ¹è¼ö·üÀ» È®ÀÎÇÑ °á°ú ±¼ Æа¢À» ´Üµ¶À¸·Î ÀÌ¿ëÇÑ ±¸°£¿¡¼­ 100%ÀÇ ¹è¼öÀ²À» º¸¿© °¡Àå ³ô¾Ò°í, &#8709; 500 ¥ìm ÀÌÇÏÀÇ ½ÃÆÇ¿ë ¸ð·¡¸¦ ´Üµ¶À¸·Î ÀÌ¿ëÇÑ ±¸°£¿¡¼­ 80%ÀÇ ¼øȯÀ¸·Î °¡Àå ³·Àº ¹è¼öÀ²À» ³ªÅ¸³Â´Ù. ±¼ Æа¢ÀÌ µé¾î°£ ±¸°£¿¡¼­ ±¼ Æа¢À» »ç¿ëÇÑ ±¸°£¿¡ ºñÇØ ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³»¾ú´Ù.This study was conducted to develop aquaculture techniques of Marphysa sanguinea, focusing larva development and juvenile growth and survival in different substrate at the Fisheries Science Technology Center of Pukyong National University. The main spawning period of Marphysa sanguinea was from June to August. The water temperature of their spawning was about 20¡ÆC. The larvae were released and floated after staying in burrow for a while. Larva started to feed seven days after release. Larva secreted mucus covering their whole body five days after release and it constructed two types of tubes. One was ¡®¤Ñ¡¯ and the other was ¡®¤µ¡¯. True eyes appeared after fifteen days from release. From the results of growth experiments by several kinds of substrates, the highest values in the growth rate and weight gain of juveniles were shown when they were reared in oyster shell substrate of below 3 cm in the mean diameter. The lowest growth rate and weight gain of juveniles were shown when they were reared in the sand substrate of below 500 ¥ìm in the mean diameter. From the results of growth experiments by composition ratio of oyster shells, the highest values in the growth rate and weight gain of juveniles were shown when they were reared in 100% of oyster shell substrate (below 3 cm in the mean diameter), and the lowest values were shown when they were reared in 20% of oyster shell substrate (below 3 cm in the mean diameter). This result indicated that composition and features of sediment substrates play important roles on the growth and weight gain of M. sanguinea juveniles. Especially, it is expected that the use of oyster shell over 50% substrate will give effective growth of Marphysa sanguinea.

[±¹³» ÇÐÀ§³í¹®]

ÀÌ ¿¬±¸¿¡¼­´Â ÆĶû°ú È帧 ¹× ¼ö¿ÂÀÇ º¯È­ µî ÇØ»óÀÇ ´Ù¾çÇÑ È¯°æ Á¶°Ç¿¡¼­µµ ÇØ»ïÀ» ¾ÈÁ¤ÀûÀ¸·Î ¾ç¼ºÇϱâ À§ÇÑ Ä§ÇÏ½Ä ÇØ»ï ¾ç¼º ±â±¸¸¦ °³¹ßÇÏ°í ±×°ÍÀÇ ¼º´ÉÀ» Æò°¡Çϱâ À§ÇÏ¿© ´ÙÀ½°ú °°Àº ¿¬±¸ °úÁ¤º° ³»¿ëÀ¸·Î ±¸¼ºµÈ ½ÇÇèÀû ¹× ¼öÄ¡ Çؼ®Àû ¿¬±¸¸¦ ¼öÇàÇÏ¿´´Ù. 1) ½Ç³» ¼öÁ¶¿¡¼­ µðÁöÅÐ ºñµð¿ÀÄ«¸Þ¶ó¿Í È­»ó Çؼ® ¼ÒÇÁÆ®¿þ¾î¸¦ »ç¿ëÇÏ¿© ¼ö¿ÂÀÇ º¯È­¿¡ µû¸¥ ÇØ»ïÀÇ Çൿ Ư¼ºÀ» Á¶»çÇÏ¿´´Ù. 2) ÇØ»ïÀÇ Çൿ Ư¼º Çؼ® °á°ú¸¦ Åä´ë·Î ħÇÏ½Ä ÇØ»ï ¾ç¼º ±â±¸¸¦ °³¹ßÇÏ°í Morison ¹æÁ¤½ÄÀÇ À¯ÇÑ ¿ä¼Ò ¸ðµ¨À» »ç¿ëÇÏ¿© ÀÌ ±â±¸¿¡ ÀÛ¿ëÇÏ´Â À¯Ã¼·Â°ú ±¸Á¶Àû Ư¼º(¹Ý·Â, ±ÁÈû ¸ð¸àÆ®, ÃàÀÀ·Â, Æù ¹ÌÁ¦½º ÀÀ·Â) µî ±¸Á¶ ¿ªÇÐÀû ¼º´ÉÀ» ºÐ¼®ÇÏ¿´´Ù. 3) Àå±â°£ÀÇ ÇØ»ó ½ÇÇèÀ» ÅëÇØ ¼ö¿ÂÀÇ º¯È­¿Í ¸ÔÀÌ Áö±Þ À¯¹«¿¡ µû¸¥ ħÇÏ½Ä ÇØ»ï ¾ç¼º ±â±¸¿¡¼­ÀÇ ÇØ»ïÀÇ »ýÁ¸À²°ú ¼ºÀå·ü µî »ý¹°ÇÐÀû ¼º´ÉÀ» Á¶»çÇÏ¿´´Ù. ±× °á°ú¸¦ ¿ä¾àÇÏ¸é ´ÙÀ½°ú °°´Ù. ¼ö¿ÂÀÇ º¯È­¿¡ µû¸¥ ÇØ»ïÀÇ Çൿ Ư¼º¿¡ ´ëÇÑ ºÐ¼® °á°ú, ÇØ»ïÀº ½ÇÇè ¼ö¿Â Áß °¡Àå Àú¼ö¿ÂÀÎ 10¡É¿¡¼­ À̵¿/ȸÇÇ µ¿ÀÛ°ú ¹æÇâ ÀüȯÀ» °¡Àå È°¹ßÇÏ°Ô ÇÏ¿´À¸¸ç, ¼ö¿ÂÀÌ Á¡Â÷ Áõ°¡µÇ¸é ÇØ»ïÀÇ È°µ¿¼ºÀÌ ´Ù¼Ò µÐÇØÁ®¼­ 19¡ÉºÎÅÍ´Â À̵¿/ȸÇÇ µ¿ÀÛÀÌ ±Þ°ÝÇÏ°Ô ÁÙ¾îµé¾ú´Ù. ¼ö¿Âº° ÇØ»ïÀÇ ÃÖ´ë À̵¿ °Å¸®´Â ¼ö¿Â 10¡É¿¡¼­ 0.75 mÀ̾ú°í Æò±Õ À̵¿ °Å¸®´Â ¼ö¿Â 10¡É¿¡¼­ ¾à 0.2 mÀ̾úÀ¸¸ç, ÃÖ¼Ò Æò±Õ À̵¿ °Å¸®´Â ¼ö¿Â 19¡É¿¡¼­ ¾à 0.03 m·Î ³ªÅ¸³µ´Ù. ÇØ»ïÀÇ À̵¿ ¼Óµµ´Â ÀüüÀûÀ¸·Î ¸Å¿ì ´À¸®°Ô ³ªÅ¸³µ´Âµ¥, ¼ö¿Âº° À̵¿ ¼ÓµµÀÇ °æ¿ì ¼ö¿Â 10¡É¿¡¼­ ¾à 0.21¡¿10-3 m/s·Î °¡Àå »¡¶ú°í ±× ´ÙÀ½Àº ¼ö¿Â 16¡É¿¡¼­ ¾à 0.11¡¿10-3 m/s·Î ³ªÅ¸³µÀ¸¸ç, ¼ö¿Â 19¡É¿¡¼­ ¾à 0.036¡¿10-3 m/s·Î °¡Àå ´À¸®°Ô ³ªÅ¸³µ´Ù. ÆĶû°ú È帧 ¹× ¼ö¿Â º¯È­ µî ÇØ»óÀÇ ´Ù¾çÇÑ È¯°æ Á¶°Ç¿¡¼­µµ ÇØ»ïÀ» ¾ÈÁ¤ÀûÀ¸·Î ¾ç½ÄÇϱâ À§ÇÑ Ä§ÇÏ½Ä ÇØ»ï ¾ç¼º ±â±¸ 2Á¾À» °³¹ßÇÏ°í ¼öÄ¡ ¸ðµ¨¸µ ±â¹ýÀ» »ç¿ëÇÏ¿© Æķ°ú Á¶·ù·ÂÀÌ ÀÛ¿ëÇÏ´Â ½ÇÁ¦ ÇØ¿ª¿¡ ½Ã¼³µÈ ÇØ»ï ¾ç¼º ±â±¸ÀÇ ±¸Á¶Àû Ư¼ºÀ» Çؼ®ÇÑ °á°ú, ÀÌ ¿¬±¸¿¡¼­ °³¹ßÇÑ ÇØ»ï ¾ç¼º ±â±¸ÀÇ ±¸Á¶°¡ ÆĶû, È帧 µî ´ë»ó ¿Ü·Â¿¡ ´ëÇÑ È¯°æ ÇÏÁß°ú Áß·Â Á¶°Ç¿¡¼­µµ ¾ÈÁ¤ÇÏ´Ù´Â °ÍÀ» È®ÀÎÇÏ¿´´Ù. ¶ÇÇÑ ÀÌ ¿¬±¸¿¡¼­ Á¦½ÃÇÑ À¯Ã¼ ¿ªÇÐ ¹× ±¸Á¶ ¿ªÇÐÀÌ Á¶È­µÈ ¼öÄ¡ ¸ðµ¨ ±â¹ýÀÌ ºö°ú Æ®·¯½º ±¸Á¶ÀÇ Ä§ÇÏ½Ä ÇØ»ï ¾ç¼º ±â±¸ÀÇ ±¸Á¶Àû Ư¼ºÀ» Æò°¡Çϴµ¥ ¸Å¿ì À¯¿ëÇÏ´Ù´Â °ÍÀ» È®ÀÎÇÏ¿´´Ù. µû¶ó¼­ ¾ÕÀ¸·Î ÇØ»ï ¾ç½Ä »ê¾÷ÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÇØ»ï ¾ç¼º ±â±¸°¡ º¸´Ù ´ëÇüÈ­µÇ¸é ÀÌ ¿¬±¸¿¡¼­ Á¦½ÃÇÑ ¼öÄ¡ ¸ðµ¨ ±â¹ýÀº ¼öÁß¿¡ ½Ã¼³µÇ´Â °¢Á¾ ÇØ»ï ¾ç¼º ±â±¸ÀÇ ±¸Á¶Àû ¾ÈÁ¤¼º Æò°¡¿¡ ¸Å¿ì Áß¿äÇÏ°Ô È°¿ëµÉ °ÍÀÌ´Ù. ¼ö¿ÂÀÇ º¯È­ µî ÇØ»óÀÇ ´Ù¾çÇÑ È¯°æ Á¶°Ç¿¡¼­µµ ÇØ»ïÀ» ¾ÈÁ¤ÀûÀ¸·Î ¾ç¼ºÇϱâ À§ÇØ Æ©ºêÇü ½©ÅÍ·Î ±¸¼ºµÈ ħÇÏ½Ä ÇØ»ï ¾ç¼º ±â±¸¸¦ ÀúÃþ¿¡ ¼³Ä¡ÇÑ ÈÄ 295ÀÏ°£ ÇØ»ó ½ÇÇèÀ» ½Ç½ÃÇÑ °á°ú, ÇØ»ïÀÇ »ýÁ¸À²Àº ¸ÔÀÌ Áö±Þ ½©ÅÍ¿¡¼­ 77.78%, ¸ÔÀÌ ¹ÌÁö±Þ ½©ÅÍ¿¡¼­ 64.71%·Î ³ªÅ¸³µ´Ù. ±×¸®°í ÇØ»ïÀÇ ¼ºÀå·ü SGR(% day-1)Àº ¸ÔÀÌ Áö±Þ ½©ÅÍ¿¡¼­´Â 0.04·Î ³ªÅ¸³ª ÇØ»ïÀÌ ¼ºÀåÇÏ¿´À¸³ª, ¸ÔÀÌ ¹ÌÁö±Þ ½©ÅÍ¿¡¼­´Â £¿0.49·Î ³ªÅ¸³ª ¼ºÀåÀ» ÇÏÁö ¾Ê¾Ò´Ù. ¼ö¿Â°ú ÇØ»ïÀÇ »ýÁ¸À²°ú ¼ºÀå·ü¿¡ ´ëÇØ Åë°è ºÐ¼®ÇÑ °á°ú, SGR(% day-1)ÀÇ °æ¿ì ¸ÔÀÌ Áö±Þ ¹× ¹ÌÁö±Þ ½©ÅÍ¿¡¼­ ¸ðµÎ À¯ÀǼºÀÌ ³ªÅ¸³ªÁö ¾Ê¾Ò´Ù. ÀÌ¿¡ ºñÇØ »ýÁ¸À²Àº ¾çÂÊ ¸ðµÎ ¸ÔÀÌ ¹ÌÁö±Þ ½©ÅÍÀÇ °æ¿ì P

[±¹³» ÇÐÀ§³í¹®]

¹ÙÀ§Åа¹Áö··ÀÌ(Marphysa sanguinea)ÀÇ ÃʱâÁ¾¹¦´Ü°èÀÇ »ýÁ¸Àº ¹ÙÀ§Åа¹Áö··ÀÌ ¾ç½Ä»ý»ê·ÂÀ» °áÁ¤Áþ´Â ¸Å¿ì Áß¿äÇÑ ´Ü°èÀÌ´Ù. µû¶ó¼­ º» ¿¬±¸´Â ÀÌ ½Ã±â¿¡ ³ôÀº Ä¡»çÀ²À» ¹æÁöÇϱâ À§ÇØ ¾Ë¸ÂÀº ¸ÔÀÌ¿ø ¹× »ç·á ±ÞÀÌÀ² ±Ô¸íÀ» ±Ô¸íÇϱâ À§ÇÏ¿© º» ½ÇÇèÀ» ½Ç½ÃÇÏ¿´´Ù. À¯»ýÀÇ ¾ÇÄ¡°¡ »ý±â´Â 7ÀÏ Àü±îÁö´Â ¸ðµç ±¸°£¿¡¼­ »ýÁ¸À² 100%¸¦ º¸¿´À¸¸ç, ¼ºÀå Â÷À̸¦ º¸ÀÌÁö ¾Ê¾Ò´Ù. ¾ÇÄ¡°¡ »ý±â°í ¹ß»ýÈÄ 1°³¿ù±îÁö´Â Å»°¢¾ËÅ×¹Ì¾Æ ±¸°£¿¡¼­ÀÇ »ýÁ¸À²ÀÌ ÃÖ´ë 66.7%·Î °¡Àå ³ô¾ÒÀ¸¸ç, ´ÙÀ½À¸·Î »õ¿ì¿ë EP»ç·á°¡ ÃÖ´ë 54.9%, È¥Çչ̼¼Á¶·ù´Â 17.6%ÀÇ »ýÁ¸À²À» ³ªÅ¸³»¾ú´Ù. 2°³¿ù°´Â Å»°¢¾ËÅ×¹Ì¾Æ ±¸°£¿¡¼­ÀÇ »ýÁ¸À²ÀÌ ÃÖ´ë 43.2%·Î °¡Àå ³ô¾ÒÀ¸¸ç, ´ÙÀ½À¸·Î »õ¿ì¿ë EP»ç·á°¡ ÃÖ´ë 30.4%, È¥Çչ̼¼Á¶·ù´Â 0.1% ÀÌÇÏÀÇ »ýÁ¸À²À» ³ªÅ¸³»¾ú´Ù. 3°³¿ù°´Â Å»°¢¾ËÅ×¹Ì¾Æ ±¸°£¿¡¼­ÀÇ »ýÁ¸À²ÀÌ ÃÖ´ë 7.9%·Î °¡Àå ³ô¾ÒÀ¸¸ç, ´ÙÀ½À¸·Î »õ¿ì¿ë EP»ç·á°¡ ÃÖ´ë 3.9%ÀÇ °á°ú¸¦ ³ªÅ¸³»¾ú´Ù. ¶ÇÇÑ ¼ºÀå ´Ü°èº°·Î º¸¾ÒÀ» ¶§ Ä¡»çÀ²ÀÌ °¡Àå ³ôÀº 15~30ÀÏÀ̾úÀ¸¸ç ÀÌ ½Ã±â¿¡ Å»°¢¾ËÅ×¹Ì¾Æ 75 mg/3000 inds ±¸°£ÀÌ Ä¡»çÀ²ÀÌ °¡Àå ³·Àº °ÍÀÌ º¸¿´´Ù. ¼ºÀå¿¡ À־´Â ÃÖÁ¾ 3°³¿ù° Å»°¢¾ËÅ׹̾ư¡ ÃÖ´ë 42.2¡¾5 chaetigers·Î¼­ »õ¿ì¿ë EP»ç·áÀÇ ÃÖ´ë 40.3¡¾5 chaetigers º¸´Ù ¹Ì¼¼ÇÏ°Ô ´õ Å« ¼ºÀå Â÷À̸¦ ³ªÅ¸³»¾ú´Ù. ¸ÔÀÌ·® ½ÇÇè¿¡¼­´Â »õ¿ì¿ë EP»ç·á, Å»°¢¾ËÅ×¹Ì¾Æ ¸ðµç ±¸°£¿¡¼­ 75 mg/3000 inds ±¸°£ÀÌ °¡Àå ³ôÀº »ýÁ¸À² ¹× ¼ºÀåµµ¸¦ ³ªÅ¸³»¾ú´Ù. ¸ÔÀÌ °ø±ÞÁֱ⠽ÇÇè¿¡¼­´Â ÁÖ 1ȸ ¸ÔÀÌ °ø±ÞÀÌ ÀÚÁÖ °ø±ÞÇÏ´Â °Í º¸´Ù ³ôÀº »ýÁ¸À» º¸¿´À¸¸ç, 15~30ÀÏ ½Ã±âÀÇ ³ôÀº Ä¡»çÀ²ÀÌ °¨¼ÒÇÏ´Â °ÍÀ» º¸¿´´Ù. º» ¿¬±¸¸¦ ÅëÇÏ¿© ¹ÙÀ§Åа¹Áö··ÀÌ Ä¡Ãæ Ãʱâ´Ü°èÀÇ »ç·á·Î½á Å»°¢¾ËÅ×¹Ì¾Æ 75 mg/3000 inds°¡ °¡Àå ÀûÇÕÇÑ °ÍÀ¸·Î ÆǴܵǸç, °ø±ÞÁÖ±â´Â 1ȸ/1ÁÖ °£°ÝÀ¸·Î °ø±ÞÇÏ´Â °ÍÀÌ °¡Àå ÀûÇÕÇÑ °ÍÀ¸·Î ÆǴܵǾú´Ù.

[±¹³»³í¹®]

ÀÌ ³í¹®¿¡¼­´Â ¾Ö´Ï¸ÞÀ̼ÇÀÇ ¾ç½Ä¿¡ ´ëÇÑ À¯ÇüÀ» ºÐ¼®ÇÏ¿´´Ù. ¿ª»çÀû ¾ç½Ä¿¡´Â ÀÚ±â ÀڽŸ¸ÀÇ °íÀ¯ÇÑ Æ¯Á¤±âÁúÀ» µå·¯³»´Â °³Àξç½Ä°ú À¯»çÇÑ È¯°æÀ» °øÀ¯ÇÏ´Â º¸ÆíÀû ¼ºÇâÀÎ ½Ã´ë¾ç½Ä, ±×¸®°í Áý´ÜÀÇ ÇüÅÂÀû ÃëÇâ°ú ¹ÎÁ·Á¤¼­¸¦ µå·¯³»´Â ¹ÎÁ·¾ç½ÄÀ¸·Î ºÐ·ùÇÒ ¼ö ÀÖ´Ù. À̸® Æ®¸¥Ä«¿Í ÆÀ ¹öƲ, À¯¸® ³î½ºÅ×ÀÎ µîÀÇ °³Àξç½ÄÀº °¢ °³ÀÎÀÇ µ¶Æ¯ÇÑ °¨¼ö¼º°ú °üÂû·ÂÀÌ ¶Ù¾î³­ ¿µ»ó¹Ì·Î Ç¥ÇöÇÏ°í ÀÖÀ¸¸ç, ÁÖÁ¦¿¡ ´ëÇÑ Çؼ®°ú ¸Åü¸¦ ´Ù·ç´Â ±â¼úÀÌ ¶Ù¾î³²À» ¾Ë ¼ö ÀÖ´Ù. ¾Ö´Ï¸ÞÀ̼ÇÀÇ °íÀüÀû ±Ô¹üÀÇ ½Å±â¿øÀ» ±¸ÃàÇÑ µðÁî´Ï´Â dzºÎÇÑ Ç¥Á¤¾ð¾î¿Í ¼¶¼¼ÇÑ µ¿¼¼ÀÇ Ç® ¾Ö´Ï¸ÞÀ̼ÇÀ¸·Î ¹Ì±¹¾Ö´Ï¸ÞÀ̼ÇÀÇ ¹ÎÁ·¾ç½ÄÀ» ¿Ï¼º½ÃÄ×°í, ÀϺ» ¾Æ´Ï¸ÞÀÇ ¿ª»ç¾ç½Ä¿¡´Â ¸î ¸î °¨µ¶µéÀÇ ³ë·Â°ú ÇÔ²² ÈÞ¸Ó´ÏÁòÀû »ç»ó, ±×¸®°í ÀϺ»ÀÇ »çȸ¹®È­¿Í ÀüÅëÀÇ ¸ÆÀ» À̾´Â Áöºê¸®°¡ ±× Á߽ɿ¡ ÀÖ¾ú´Ù.

[±¹³»³í¹®]

½º¸¶Æ® ¾ç½Ä ±â¼úÀº ½º¸¶Æ® ¾ç½Ä ¼Ö·ç¼Ç °³¹ß, ¾ç½Ä»ý»ê ÀÚµ¿È­, ¾ç½Ä »çÀ°¼ö ó¸® ºÐ¾ß µî¿¡¼­ Á¡Â÷ÀûÀ¸·Î ¹ßÀüÇÏ°í ÀÖÀ¸³ª, ¼¼°è ¾ç½Ä ½ÃÀåÀÇ È®´ë·Î ÀÎÇØ ¾ç½Ä »ý»ê ±â¼ú°ú ICT ±â¼ú°úÀÇ À¶ÇÕÀÌ °¡¼ÓÈ­ µÉ Àü¸ÁÀÌ´Ù. º» ³í¹®¿¡¼­´Â ½º¸¶Æ® ¾ç½Ä ±â¼ú ƯÇ㠺м®°ú ±¹³»¿Ü ±â¼ú µ¿Ç⠺м®À» ÅëÇØ ½º¸¶Æ® ¾ç½Ä ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀü ¹æÇâÀ» ¼Ò°³ÇÑ´Ù.

/ 1,281

Filters

º¸±âÇü½Ä

Á¤·Ä¼ø¼­

Æ÷¸Ë

¸®½ºÆ® ¼ö